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ABSTRACT 

Wireless sensor networking (WSN) is a relatively new field of research with 

many applications, both military and commercial. In the military applications, WSNs 

could be used in hostile environments to minimize the need for human presence. A WSN 

consists of a large number of small sensor nodes that are deployed in an area of interest 

for collecting information. A subgroup of nodes then collaborate their transmissions to 

achieve beamforming. The information collected by the WSN is relayed to an unmanned 

aerial vehicle (UAV), which is synchronized with the transmission beam of the network. 

In this study, the positioning of the nodes in a WSN is investigated with the main object 

to propose a method to find the best combination of nodes for beamforming given a 

random distribution in the sensor field. Additionally, the method is expandable in two 

dimensions and capable of forming a planar antenna array which will improve the 

beamforming gain. A simulation model was developed in MATLAB code to study the 

formation of linear and planar antenna array of nodes. The existing iterative technique in 

the formation of a linear antenna array is compared with the proposed and the results 

showed an improvement in linearity.  
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EXECUTIVE SUMMARY 

A wireless sensor network (WSN) consists of large number of small sensor nodes 

that are deployed over an area in order to collect information. The military applications 

that can be used include monitoring of biological, nuclear, chemical weapons, terrorist 

attacks actions and reconnaissance. The information collected by the sensor nodes must 

be transferred to an analysis center for further investigation and decision-making. The 

sensor nodes, due to their limited power capabilities, have limited transmission range. By 

providing distributed power usage across the network, the nodes can coordinate their 

transmissions through beamforming and increase the transmission range. The beam of the 

network is coordinated with an unmanned aerial vehicle (UAV), and the data collected by 

the sensor nodes are transmitted to the UAV. 

The objective of this thesis was to select appropriate nodes in a randomly 

deployed sensor field to form a linear or planar array for beamforming. For the WSN to 

perform distributed beamforming and information transmission, a suitable subgroup of 

nodes must be selected from the cluster. The subgroup of nodes selected should satisfy 

specific criteria in inter-node spacing and linearity. Multiple methods for both linear and 

planar array formation were proposed.  

For the linear array formation, we presented three methods: iterative, concurrent 

and line fitting approach; and for the planar array formation, two methods: concurrent 

and line fitting. The iterative approach begins with three nodes and then expands to the 

desired number of nodes of the array. The concurrent approach is a technique based on 

the iterative approach and the line fitting approach is based on the solutions found by 

constructing and rotating a line obtained based on least squares line fitting in a cluster. 

Expanding the concurrent and the line fitting approaches, we proposed two methods for 

planar array formation. 

To evaluate the performance of each method, we introduce a set of metrics used 

for calculating the errors of the array formed. For the linear array, we proposed three 



 xviii

error metrics: perpendicular distance error, inter-node spacing error and total error; and 

for the planar array, we used one error metric: total error. 

A simulation model was developed and implemented in MATLAB with multiple 

node densities in the sensor field, communications range of each node and 

communication frequencies as parameters. The array performance was evaluated using 

the defined error metrics. 

Results showed that the proposed methods demonstrate an improvement in 

linearity in the construction of a linear array when compared with existing techniques. 

The density of nodes in the sensor field plays a significant role in reducing the error 

metrics in both linear and planar arrays. The average error metrics in the construction of 

the linear arrays decreased as the density of nodes increased for all simulations. 

Additionally, for the same operating frequency, and as more nodes were added to the 

array, the total error decreased slightly with density for the line fitting method. 

The linear array formation is successfully extended to the planar array, which 

demonstrated improved performance. The line fitting method is used in all cases and the 

total error decreased when the node density in the area was increased. 
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I. INTRODUCTION  

Over the years, wireless sensor nodes have developed into low cost, small size 

devices with multiple capabilities. The vision is that thousands of these smart 

microsensors can be deployed on a battlefield by an aircraft. After a self-configuration 

process among the nodes, the wireless sensor network (WSN) will be capable of 

collecting and analyzing the information throughout the network. The collected data will 

be transmitted to end users located outside the network for further analysis and decision-

making.  

Due to the limited power capabilities of each node, the transmission range will be 

very small. Also, the nodes will be distributed in a non-friendly environment in terms of 

the surface and obstacles, and therefore it is likely that the radio horizon of each node 

will be limited.  A new method is proposed by [1] and [2] to distribute power usage 

across the sensor network, which enables a better and broader spread of energy 

consumption among the nodes (see Figure 1). 

 
Figure 1.   Use of a UAV in distributing power usage of the sensor network (From 

Ref.[1]) 
 

In distributing the power usage of the sensor network, nodes organize into a 

subgroup (known as a transmit cluster), coordinate their transmissions and form a beam, 

which has the effect of increasing transmission range. The beam is then aligned with the 

receiver of an unmanned aerial vehicle (UAV), which flies above the network according 
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to a pre-determined search plan, and the information of the network is relayed to the 

command and control point as depicted in Figure 2. 

Transmit 
Cluster

 
Figure 2.   Transmit Cluster and Beamforming in WSN with Nodes Coordinating 

Transmission (From Ref. [1]) 

 

A. THESIS OBJECTIVE  
The objective of this thesis is to propose a method to find the best combination of 

nodes for beamforming, given a random distribution in the sensor field. The method 

should select a specific set of nodes from the field that closely approximates the best 

possible array for beamforming. The nodes selected should be aligned as close as 

possible to a linear array with inter-node distances of one-half a wavelength. The method 

should be expandable to two dimensions for forming a planar array, which will improve 

the beamforming gain. 

A two part process in forming the most appropriate arrays of nodes is proposed in 

this work. The first part consists of a concurrent and a line fitting approach based on least 

squares regression method to construct a linear array. The purpose is to improve the 

beamforming gain achieved compared to the iterative construction of an array as 

presented in [1]. The second part involves expanding the array constructed using the line 

fitting approach to a planar, two-dimensional array. Both linear and planar simulation 

models have been developed in MATLAB and their results are compared. 

 
B. RELATED WORK 

A beamforming approach for distributed wireless sensor networks introduced by 

Vincent et al. [1] assembles a subset of sensor nodes into a distributed array for 
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beamforming. A distributed array is constructed by specific nodes, and the data gathered 

by the network are transmitted as a narrow beam toward an overhead UAV. The 

performance of the technique used to construct the distributed array, referred to as 

iterative approach, in [1] is compared to the line fitting approach proposed and developed 

in this thesis (in chapter III). 

Distributing power usage in wireless sensor networks for energy conservation is 

presented by Vincent et al. in [1] and [3]. A method to reassign the transmit cluster that 

forms (along with other nodes of the network) the distributed array is presented, 

achieving three main goals. First, a broader spread of the energy consumption, second, 

minimizing the energy expended in moving the cluster and, finally, reducing to the extent 

practicable the time to bring the UAV and the sensor network’s beam into alignment. 

Lee et al. [4] presents algorithms for forming specific geometric patterns with a 

mobile wireless sensor network without the assistance of the user. The patterns presented 

are a line, circle and regular polygon. The nodes forming the specific patterns do not 

exchange information but are capable of mobility and are equipped with cameras on 

board. These two characteristics can improve the ability to construct specific patterns of 

nodes in the network but also require increased processing and moving capabilities. 

These capabilities lead to an increased power consumption, which is not desired in a 

sensor field covering a 24/7 military surveillance area. 

Arrayed wireless sensor networks and the problem of forming an array is 

presented by Elissaios et al. in [5]. Wireless arrays are the dynamic entities that are 

formed by specific groups of nodes under specific rules. The main advantage for wireless 

array, as described, is their capability to suppress interference, localize nodes and also act 

as message forwarding agents. The method proposed focuses on the selection of nodes 

for the formation of wireless arrays. 

Lastly, collaborative beamforming for distributed wireless ad hoc sensor networks 

is analyzed by Ochiai et al. in [6] using the theory of random arrays. It is shown that with 

N  sensor nodes uniformly distributed in an area, the directivity can approach ,N  

provided that the nodes are located sparsely enough. 
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C. THESIS OUTLINE 

The organization of the thesis is as follows. Chapter II introduces the wireless 

sensor networks with respect to various architectures, standards in use, routing 

techniques, positioning, and localization of nodes as well as an introduction to array 

beamforming. Chapter III presents the proposed methods for the construction of linear 

and planar arrays. Chapter IV presents the performance evaluation metrics and simulation 

results of the constructed grids, for both the linear and planar arrays. Finally, in Chapter 

V, the overall conclusions and the highlights of future work are discussed. The appendix 

includes the MATLAB source code used in the simulation studies. 
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II. WIRELESS SENSOR NETWORKS AND BEAMFORMING 

This chapter presents an overview of WSN, including definitions, characteristics, 

limitations, architecture and clustering in WSN. Next, the method for distributing power 

usage across a WSN, proposed by [1], is reviewed. The method suggests collaboration of 

the nodes in the network and the use of a UAV as an intermediate for transferring the 

information to an analysis center. Finally, distributed beamforming as performed by 

wireless sensor nodes is discussed. 

 

A. OVERVIEW OF WSN 

WSNs are expected to have a tremendous impact in the near future both for 

military and commercial applications. Sensor networks represent a significant 

improvement over traditional sensors, networks and wireless communications. In this 

section, we will present the basic definitions, characteristics and limitations in WSNs, 

and we will address the most important design factors. 

 

1. Definitions and Description 

A WSN is a wireless network consisting of a large number of small-sized sensor 

nodes with short range communication range, deployed either into the phenomenon of 

interest or very close to it. The nodes are autonomous devices, which cooperate with each 

other in transferring information and are spatially distributed in a sensor field. 

The nodes consist of a small microprocessor, a battery, a radio transceiver and 

one or more sensors in accordance with the specific sensing tasks that the network has to 

accomplish. Sensors monitor physical, environmental or human actions, such as 

temperature, pressure, motion, various gasses, and vibration. The sensor variety is only 

limited by the node size and the capability of the network to process, transfer and analyze 

the information within a reasonable time delay. 

Applications of WSNs include military, environmental, acoustic, seismic, medical 

monitoring, and also fire, motion, object detection. The WSN is distributed in the area 

where it is assigned to monitor or detect a specific phenomenon.  
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2. Characteristics and Limitations 

The main design characteristics of WSNs that affect their overall performance are 

energy efficiency, data routing efficiency, fault tolerance, delay and throughput, 

scalability, synchronization and localization.  

Limitations of WSN include the size of the nodes, which should be kept as small 

as possible, especially for military applications when monitoring an area. Size limits the 

storage and memory capabilities of the nodes. The cost of sensor nodes is also a 

limitation since the number of nodes in the field may range from hundreds to thousands. 

Both size and cost of the nodes contribute to the major constraint in a WSN, which is 

limited energy resources due to the limited battery life. Communication range is affected 

and limited due to this as well. 

The nodes have to communicate and participate in the sensing task in an energy 

efficient manner with low power consumption for the network to be deployed and work 

effectively. The information needs to be routed with the following constraints in mind: 

power consumption for a single packet, reliability and quality of the network, protocol 

efficiency depending on the application, number of hops among source and nodes, time 

required for the communication, and need for adaptation to the environment and to 

specific network conditions. 

In WSNs, routing is one of the most significant functions and needs to be 

designed efficiently. Routing protocols that meet the needs of most of the criteria above 

can be classified as either proactive or reactive routing protocols [7]. In the design of a 

WSN, the selection of a suitable routing protocol is based on the specific purpose that the 

network has to accomplish.  

a. Energy Efficiency 
Energy efficiency is another major concern in the performance of WSNs. 

Since each node can only be equipped with a limited power source (typically less than 0.5 

Ah, 1.2 V) [8], the power must be well managed among communication and computation 

processes. The node’s lifetime depends on the battery lifetime, excluding manufacture or 

physical malfunctions.  
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Thus, power conservation and management should be thoroughly 

addressed when designing a WSN. The power consumption can be divided into three 

categories: sensing, data processing, and data communication [8]. Among the three, data 

communication has the highest percentage of power consumption. Also, while the first 

two are determined when designing the hardware of the node, the communication power 

consumption is highly dependent on the specific conditions of the environment (i.e., 

positioning, location, etc.) and the transmission medium (i.e., weather conditions) which 

cannot be accurately predetermined. 

b. Density 
The number of the sensor nodes in the network field depends on the 

specific application for which the WSN is deployed. The density can vary from a few 

nodes to hundreds or thousands in a region. The density µ  can be calculated as 

                                 
2

( ) N RR
A
πµ = ,                                             (1) 

where N  is the number of nodes in a region of area A  and R  is the radio transmission 

range [9]. So, ( )Rµ  gives the number of nodes within the transmission radius of each 

node in region A . 

 

3. Architecture and Clustering 

Flat and tiered are the two main architectures that exist for wireless sensor 

networks. In flat sensor networks, the nodes are homogenous in functionality and 

capabilities while tiered sensor networks have the basic view of a pyramid as in Figure 3. 

In a tiered network, some nodes may have more capabilities and functionality than others. 

The higher nodes in the hierarchy provide services to those below. For large sensor 

networks to be able to function correctly, it has been suggested that clustering is required 

[10]. The main categories of tiered sensor networks are: geographical, information, and 

security clustering [6]. 
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Figure 3.   Tiered Architecture in Low Rate Wireless Personal Area Networks (LR-

WPAN) (from [11]) 
 

This thesis is focused on a flat network of homogeneous nodes that organize 

themselves into clusters based on certain conditions, depending on the application. Each 

cluster will select a single node as a coordinator or  clusterhead (CH).  

The CH, in our study, will have increased responsibilities but not increased 

physical capabilities and will be charged with managing the resources within the cluster 

as well as maintaining communication with neighboring clusters. The selected CH may 

be any of the nodes within the network and the selection is based only on the sensor field 

local density criteria (i.e., different areas (spots) in the sensor field would have different 

density due to random distribution of nodes). The basic mode of organizing the sensor 

network in this task is the geographical clustering in which the criterion for selecting the 

cluster is based on geographical proximity of the neighbor nodes. 

The communication distance for each node is proportional to the output power; in 

other words, the minimum output power required to transmit a signal over a distance d  is 

proportional to nd , where 2 4n≤ <  ( n  is closer to 4 for a low-lying antenna and near-

ground channels) [8], [12]. Since the nodes in a wireless sensor network are sensitive to 

energy consumption, the communication range for each node will be low. In [8], it is 

shown that the received power starts to drop with higher exponents at smaller distances 

for low antenna heights.  

For a sensor node, the communication range will be a circle with radius r . In this 

area, the Signal to Noise and Interference ratio (SNIR) of the signal received by any node 
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should be above the receiver threshold. The receiver threshold depends only on the 

manufacturing quality and characteristics of the node’s receiver. Keeping in mind that the 

sensor nodes are made simply and inexpensively and also the limitations in the output 

power of the transmitter, the communication range of a node should be considered low 

for simulating realistic scenarios. 

 

4. Deployment  
The topology establishment of a WSN can be divided into three main phases [8]: 

• Pre-deployment and deployment phase 

• Post-deployment phase 

• Redeployment of additional nodes phase 

In the pre-deployment and deployment phase, the sensor nodes are deployed in 

the field. This can be achieved by either positioning them one by one or by dropping 

them from the air by a UAV, a helicopter or an aircraft.  

In the second phase, right after deployment of the sensor nodes in the field, the 

network has to organize itself according to the specific task to be performed.  Any 

topology changes in this phase are due to malfunctions, node position, communication 

range capabilities and task details. 

The last of the three deployment phases mentioned above is required in order to 

maintain the initial node density in the field to replace the malfunctioning or failed nodes. 

 

B. METHOD FOR DISTRIBUTING POWER USAGE ACROSS A WSN [1] 
WSN are especially attractive for military applications because they provide 

unattended surveillance of the deployed area. A WSN can be deployed into a hostile 

environment and gather information, replacing a vulnerable group of soldiers. No human 

needs to be exposed to the threat (e.g., into a chemically effected environment). The 

nodes, instead, can gather all the information needed and transmit them to a distributed 

analysis center.  
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Each node, though, has limited transmission power, so the transmission distance 

is also limited. Other factors that may limit the transmission distance are the surface 

terrain or the presence of obstacles. By combining the transmissions of a subgroup of 

nodes through beamforming, the transmission distance can be significantly increased. 

This method of distributing the power usage of the WSN addresses the transmission of 

the data over larger distances through efficient management of the nodes’ available 

power in the absence of an absolute positioning system. 

Without GPS, the nodes cannot determine their absolute position and must rely on 

inter-node distances. In [1], to distribute power usage across a WSN it is assumed that 

these distances between nodes are known. The network, given the inter-node distances in 

the cluster, is capable in forming an array as will be described in Chapter III. The 

additional task is that the network will have to determine all of inter-node distances 

among the nodes that are in communication distance of each other. The inter-node 

distance can be calculated by measuring propagation delay of radio signals among the 

nodes. 

 

1. Tasks Performed in Post Deployment Phase of a Distributing Power 
Usage WSN 

The second phase or post-deployment phase is when the network must perform its 

functions which, in our case, are the following: 

• An initial CH must be assigned according to an algorithm. 

• Each node has to determine its distance among other neighbor nodes. 

• Nodes are organized into clusters, and selected nodes must form a specific 

array pattern (one or two-dimensional array). 

• Data are transmitted outside the network by coordinating the transmission 

and forming a beam. 

In order for the sensor network field to be able to find its CH, a beacon message is 

sent from every node after the initial deployment. Each node transmits a beacon message, 

and the message is received by its neighbors. Additionally, each node receives its 
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neighbor’s messages. For example node i  with iN  neighbors receives iN  beacon 

messages. The node with the most neighbors in its communication distance is chosen to 

be the CH. 

After determining the CH in a deployment area, the information gathered from the 

sensors in the network needs to be transferred to a distributed analysis center. This 

analysis center is assumed to be away from the hostile environment where the network 

has been deployed. It may be a secure military base hundreds of miles away for safety 

purposes. The basic objective is the fast and reliable transfer of the information from the 

sensor network into a secure distributed center [1] for analysis purposes.  

To accomplish this, a UAV is flown above the wireless sensor nodes for a limited 

time period, long enough for the network to transmit the information collected. Using a 

subgroup of nodes that belong to the cluster, a transmit cluster [1], which is able to 

transmit the information to the UAV, is formed (see Figure 2). The information gathered 

in the WSN is transmitted to the UAV by the participation of the specified nodes in the 

transmit cluster, which coordinate their transmissions in order to form a beam. The beam 

of the network is engaged and synchronized with the UAV, and the transmission of the 

data initializes. The entire process does not include any human interaction until the data 

is received by the distributed analysis center. The UAV serving as an aerial relay between 

the WSN and the analysis center is shown in Figure 1. 

Because of the limited on duty time of the UAV in the hostile environment, the 

transmission from the sensor network needs to be fast and reliable. The signals 

transmitted by the subset of nodes to the UAV are identical to the signals used for inter-

node communication except for pre-calculated phases and amplitude offsets needed to 

perform the beamforming. The theoretical gain achieved after beamforming is 

proportional to the square of the number of participating nodes ( 2 whereN N∝  is the 

number of participating nodes) [1],[13]. For a fixed Signal to Noise Ratio (SNR) for the 

communication link between the network and the UAV, the more nodes participating in 

the array formation, the less power is required and the better is the beamforming gain 

achieved. However, even for a large N, the transmission of data between the sensor 
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network and the UAV is energy consuming. Thus, after a certain time, a change in the 

specified CH and subgroup of nodes may be required.  

After entering the sensor network area, the UAV has to search for the sensor 

network beam. Several methods could be used for fast engagement and synchronization 

of the UAV. For the alignment of the beam towards the UAV, two search plans exist, the 

progressive search and the random search. These techniques are widely used in 

antisubmarine warfare for a uniform search in an area for a stationary target [14]. For a 

random search, it is proven that, on average, we cover the entire area before detecting the 

target, but also the probability of detection is never assured. In the progressive search, we 

expect to cover only half the area before detecting the target. However, assuming 

independent segments of the search is not realistic. The probability of detection in any 

given minute depends on whether or not we detected the target during the previous 

minute [3] [14]. 

 

C. BEAMFORMING 

In the post deployment phase of a WSN, a method as presented above, for 

distributing the power usage of the sensor network could be achieved by combining the 

transmission of selected nodes of a subgroup. Since each node has an omni-directional 

antenna and limited transmission capabilities, only by combining the transmission of 

multiple nodes together can we achieve greater transmission distances. The selected 

nodes would coordinate their transmissions by transmitting the same signal with 

calculated phase and amplitude offsets [1]. The electromagnetic waves will interfere and 

the total radiated power would be focused in a predetermined direction (e.g., UAV). The 

concentrated power in the preferred direction is the gain G  and the participating nodes 

for achieving this gain are the array elements. As more nodes participate in the array, we 

are able to achieve a higher gain. Two array geometries are typically considered: linear 

(one dimensional) and planar (two dimensional) [3], [15]. 
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1. Linear Array Beamforming 

In this section, we will study the beamforming achieved by M omni-directional 

elements. The M  elements are assumed to be in a line with equal spacing among them. 

We assume that a source exists in the far field at an angle αθ  with respect to x  (array) 

axis. The source is transmitting a signal ( )s t  modulating a complex carrier cj te ω  and we 

assume that the arriving wavefront is planar [15] as shown in Figure 4.  

αθ

2
cosx

αθ

 
Figure 4.   An 1M ×  Uniform Linear Antenna Array  

 

The thm  element receives the signal 

                                             cos( ) m
m a

xt
c

αθθ =                                                   (2) 

seconds before it is received by the first element at the origin, where c  is the speed of 

light and mx  is the distance from the origin to the thm  element. The sum of the antenna 

outputs is the array factor (spatial response ( )F θ ) of the array  

               
2 cos( )( )

1 1
( ) or ( ) m a

c m a

M M j xj t
a a

m m
F e F e

π θω θ λθ θ
= =

= =∑ ∑                                (3) 

where λ is the wavelength of the source. 

If we desire to point the radiated power in a specific direction, we have to 

multiply the output of each array element by a complex weight, 0( )I c mj t
m e ω θ− , where θ0 is 

the angle of arrival measured from the array axis. The main lobe of the radiation pattern 



14 

is designed to give the maximum value of ( )aF θ  at 0aθ θ= . The squared magnitude of 

the radiation power pattern is given by  

                                              2( ) ( )a aG k Fθ θ= ,                                               (4) 

where k  is a proportionality constant [15].  

 

2. Planar Array Beamforming 

Figure 5 shows an M N×  planar array located in the far field of a point source 

[15]. The array factor in the two-dimensional case is given by 

                                   
2 ( sin cos sin cos )

1
( , ) n n

M j x y

m
F e

π θ φ θ φ
λθ φ

+

=

=∑ ,                                (5) 

where ( , )n nx y are the coordinates of the thn  point, φ  is the azimuth angle with respect to 

axisx − , θ  is the elevation angle with respect to axisz −  and the array is assumed to be 

uniformly excited. 

 
Figure 5.   An M N×  Antenna Array of Omni-directional Radiating Elements [15] 

 

D. SUMMARY 

In this chapter, we presented the main definitions and characteristics of a WSN 

and also addressed the constraints in design and deployment. Next, we described a 

method for distributing power usage across the WSN in a military environment as  
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presented by [1] using a UAV for transferring the data of the network to an outlying 

analysis center. Finally, the basics of beamforming in one- and two-dimensions were 

briefly  presented.  

The next chapter will present the proposed methods for forming these linear and 

planar arrays in a WSN. 
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III. PROPOSED METHODS FOR BEAMFORMING ARRAY 
FORMATION IN WIRELESS SENSOR NETWORKS 

This chapter presents the proposed array formation techniques. We describe the 

techniques used by the network to organize the nodes of a cluster through inter-node 

distance estimation to form linear and planar arrays to achieve increased gain. 

To perform beamforming, as described in Chapter II, the antenna elements must 

be in specific positions. On the other hand, the nodes are randomly deployed in the WSN. 

Therefore, the network should be capable of  self determining which nodes would be 

selected to participate in this group. 

For the WSN to perform distributed beamforming and information transmission, a 

suitable subgroup of nodes must be selected from the cluster. For linear array formation, 

we present three methods: iterative, concurrent and line fitting and for planar array 

formation, two methods: concurrent and line fitting. All algorithms include a CH in the 

subgroup of nodes that perform the beamforming. The parameters that affect the array 

formation and the shapes that the nodes (as array elements) form will be analyzed. 

In a distributed wireless sensor network, the nodes are able to determine their 

position if a subset of nodes initially has knowledge of their absolute geographical 

coordinates. The idea is that neighboring nodes measure their distances to the beacon 

nodes, and transmit their positions to their neighbors [3]. New nodes then become beacon 

nodes and transmit their position in an iterative fashion. Applications that depend on 

precise positioning information cannot be relied upon to guarantee performance in critical 

military scenarios due to the error introduced in positioning information. In the 

techniques presented, the network does not need to construct an absolute coordination 

system for each node prior to forming an array. The only knowledge that each node is 

assumed to have is the distance to all of its neighbors within the communication radius 

[3]. 
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A. LINEAR ARRAY FORMATION 

In linear array formation, three approaches are presented: iterative, concurrent and 

line fitting. 

The iterative approach is a technique proposed by [1], which initially begins with 

three nodes and then expands to the desired number of nodes of the array. The concurrent 

approach is a technique based on the iterative approach and the line fitting approach is 

based on the solutions found by constructing and rotating a line obtained based on least 

squares line fitting in a cluster. 

For our case, in order to perform beamforming (as described in the previous 

chapter), we desire the inter-node distance to be / 2,λ where λ is the wavelength 

( / )c fλ = . Two criteria need to be satisfied: first, the nodes need to be in a line and, 

second, the spacing between adjacent nodes needs to be / 2λ . 

 

1. Linear Array Formation using the Iterative Approach 
In this procedure, as suggested in [3], the nodes are examined in groups of three. 

Consider three nodes , andS i j  ( S being the CH) and relative distances among them 

( , ), ( , ) and ( , )d S i d i j d S j . As shown in Figure 6, the three nodes are not aware of their 

absolute positions (meaning, they do not know whether they are located in a plane as in 

Figure 6 (a) or Figure 6 (b)). However, the nodes do know the distances among 

themselves and to all of those nodes that they can communicate with. 

 
Figure 6.   Relative Orientation of the Nodes [3] 
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To select the most linear shape among the three nodes, an algorithm is used and 

described in [3] that defines two constraints that must be met for a linear array. First, the 

distances among the closest nodes need to be equal. For our example in Figure 6,  

                      ( , ) ( , )d S i d i j=                                                       (6) 

which leads to the following objective: 

                                                        1 min{| ( , ) ( , ) |}d S i d i jε = − .                                     (7) 

Second, the sum of the distances of the closest nodes (inter-node spacing distance) must 

be equal to the distance between the first and the last node. Again for our example, 

                                                     ( , ) ( , ) ( , )d S i d i j d S j+ =                                            (8) 

which leads to the following objective:  

                                            2 min{| ( , ) ( , ) ( , ) |}d S i d i j d S jε = + −                                    (9) 

Combining (7) and (9) and adding appropriately chosen weights, andα β ,  gives 

                         3 min{ ( , ) ( , ) ( , ) ( , ) ( , )}d S i d i j d S j d S i d i jε α β= + − + − .                (10) 

By minimizing (10), best three nodes along a line with approximately equal distances 

among them are chosen. 

In order to satisfy the criterion that the spacing between adjacent nodes be 

/ 2λ , we minimize (10) to get 

                   4 min{ ( , ) ( , ) (| ( , ) | | ( , ) |)}
2 2

d S i d i j d S i d i jλ λε α λ β= + − + − + −             (11) 

Using the above, the first three nodes are chosen with the best linear 

characteristics and with an approximate inter-node spacing of / 2λ . Next, a fourth node 

is iteratively added using the technique described above for three nodes. The last two 

nodes in one end or the other of the first three nodes are used as reference points to 

evaluate the new node. Finally, by proceeding iteratively, we expand the array to the total 

desired number of nodes.  

 



20 

2. Linear Array Formation using the Concurrent Approach 

Based on the previously described technique, we now propose a new solution to 

finding nodes placed in a linear shape. The solution solves the problem in a concurrent 

manner for the desired number of nodes and also takes into account the desired inter-node 

spacing.  

For solving the problem concurrently, we assume that from a uniformly 

distributed random sensor field, we want to select the nodes that are positioned in as 

straight a line as possible. In Figure 7, we present two examples of nodes that are not 

suitable for beamforming. In Figure 7 (a), the nodes are not in a straight line, and, in 

Figure 7 (b), the nodes are not equally spaced. We need to find a group of nodes that 

meet both criteria. 

( , )d S i

( , )d i j ( , )d j k
( , )d k l

( , )d S k

S

S

i

i

j

j

k

k

l

l

( , )d k l

( , )d S i

( , )d i j ( , )d j k ( , )d k l

 
Figure 7.   Five Nodes Not Suitable for Beamforming 

 

Marked in red (S) in Figure 7, the CH, as in the previous method, must be 

included in the group. The remaining four nodes are , , andi j k l . To meet the first 

criterion (i.e., the nodes are in a line), we minimize the equation 

            
1

| ( , ) ( , ) ( , ) ( , ) ( , ) |C d S i d i j d j k d k l d S lε = + + + − .                      (12) 

By minimizing (12), we can be assured that the nodes selected are those that are 

positioned as close as possible on a straight line. By this, we are trying to eliminate the 

situation where the nodes are positioned as in Figure 7 (a).  

Our algorithm must also choose the nodes that are equally spaced with distance 

/ 2λ , i.e., we desire 

           ( , ) , ( , ) , ( , ) , ( , ) and ( , ) 4
2 2 2 2 2

d S i d i j d j k d k l d S lλ λ λ λ λ
= = = = = × .        (13) 
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This leads to a minimization of                            

| ( , ) | | ( , ) | | ( , ) | | ( , ) | | ( , ) 4 |
2 2 2 2 2

d S i d i j d j k d k l d S lλ λ λ λ λ
− = − = − = − = − ×               (14) 

Finally, combining the elements of (14), we need to minimumize  

                                    
2

{| ( , ) | | ( , ) | | ( , ) |

| ( , ) | | ( , ) 4 |}

2 2 2

2 2

C d S i d i j d j k

d k l d S l

λ λ λε

λ λ

= − + − + − +

− + − ×

=
                  (15) 

Combining (12) and (15) and adding appropriate weights, we have  

         
{| ( , ) ( , ) ( , ) ( , ) ( , ) |}

{| ( , ) | | ( , ) | | ( , ) | ( , ) | | ( , ) 4 |}
2 2 2 2 2

C d S i d i j d j k d k l d S l

d S i d i j d j k d k l d S l

ε α
λ λ λ λ λβ

= + + + − +

− + − + − + − + − ×
           (16) 

At last, we have achieved both criteria (i.e., positioning five nodes as closely as possible 

in a straight line with inter-node spacing among adjacent nodes at / 2λ ).  The “best case” 

theoretical positioning result is shown in Figure 8. 

S i j k l

( , )
2

d S i λ
= ( , )

2
d i j λ

= ( , )
2

d j k λ
= ( , )

2
d k l λ

=

( , ) 4
2

d S l λ
= ×

 
Figure 8.   Five Node Ideal Linear Array with Inter-node spacing / 2λ  Suitable for 

Beamforming  
 

The concurrent method described above solves for the formation of an array in a 

one step process, which means that we solve the problem for the total desired number of 

nodes in one step. If N nodes are needed to form the array, then the solution is solved 

initially for N nodes; in the iterative method, on the other hand, we initially solve for 

three nodes and then expand to N. This approach would examine all the possible 

combinations within the cluster and the solution that minimizes (16) would be selected. 
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3. Linear Array Formation using the Least Squares Line Fitting 
Approach 

The least squares fitting technique (regression line) is a statistical procedure for 

finding the best linear fit to a set of points by minimizing the sum of the squares of 

differences between the points generated by the function and corresponding points in the 

data (residuals). The linear regression function which provides the linear solution is given 

by  

2 1( )f x c x c= +                                                 (17) 

where 2c  is the slope of the line and 1c  the offset. The node positions and the linear 
regression solution are shown in Figure 9. 

  
Figure 9.   The Least Squares Line Fitting Solution 

 

The least squares line fitting is applied to all the nodes that are within the 

communication distance of the CH (i.e., cluster). The result is Line γ shown in Figure 10. 

The CH does not necessarily lie on the line, but it should clearly be very close to it since 

it is typically positioned near the center of the cluster. 

Line γ

CH
2

4

3

5

1

 
Figure 10.   Least Squares Line Fitting applied to Cluster 
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The heavy dot numbered 1 on Line γ in Figure 10 is the orthogonal projection of 

the CH onto the line (i.e., intersection of the line from CH perpendicular to Line γ). The 

heavy dots numbered 2 and 3 are spaced exactly / 2λ  from the first on Line γ and so on. 

These dots represent the ideal node positions along the Line γ and their inter-node 

spacing can be summarized as  

                 1 2 2 4 1 3 3 5( , ) ( , ) ( , ) ( , )
2

d s s d s s d s s d s s λ
= = = = .                (18) 

where 1 2( , )d s s  is the distance between Dot 1 and Dot 2 along the line. 

In order to have a linear array consisting of nodes equally spaced by / 2λ , the 

theoretically perfect solution would be the dots on the least squares fitted line. In practice, 

in a randomly deployed (uniformly distributed) sensor network field, we select the sensor 

nodes that have the minimum distance from the dots. The solution is shown in the Figure 

11, where the nodes marked in green are selected as the closest nodes to Dots 2 to 5. The 

CH and Nodes 2-5 form the linear array for beamforming. 

 
Figure 11.   Formation of the Linear Array using Least Squares Error Fitting 

 

In an attempt to form the best possible linear array centered around the CH, (the 

least squares fitted) Line γ is rotated in counter clockwise direction by an angle φ as 

shown in Figure 12. After the rotation, again four ideal node locations with inter-node 

distances of / 2λ  are marked as heavy dots along the rotated line. Followed by that, four 

sensor nodes closest to the new ideal locations (dots) are selected (marked in blue). The 
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two solutions (green and blue nodes) are compared (according to metrics described in the 

next chapter) and the one with the least error is chosen to form the array.  

The least squares line fitting and iterative approaches are simulated in Matlab. 

Figure 13 shows the results of simulation for a 7-node array. The green lines represent 

two solutions for the least squares approach after a rotation of 090 degrees and the red 

line represents the solution of the iterative method. Both methods are implemented in a 

field of 10 10×  meters for 500 nodes. Only the nodes in the communication radius of the 

CH are shown. 

While the least squares line fitting is applied initially to the cluster area, an 

alternative method would be to place a line randomly through the CH, and then rotate it 

multiple times using the above process. The initial direction of the line applied to the 

cluster does not effect the final solution. The number of the rotations depends on the 

density of the nodes and the exact number would need to be found heuristically. In a high 

density field, more rotations would be required in order to examine all the possible 

solutions. 

  
Figure 12.   Formation of Linear Array using Least Squares Line Fitting after Rotation by 

an Angle φ 
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Figure 13.   Comparison of the Line Fitting (green line) Solution with the Iterative  

Construction (red line) in MATLAB in a sensor field of size 210 10 m×  with 500 
nodes 

 
 
B. PLANAR ARRAY FORMATION 

Expanding the techniques described for the formation of a linear array, we can 

form an array in two dimensions (i.e., planar array). Again, the larger the size of the array 

with inter-node spacings based on / 2λ , the better is the beamforming gain. Here, planar 

array on a square grid (i.e., 3 3× , 4 4× , 5 5× , etc.) are considered. 

Both the concurrent and the line fitting approach are discussed below for planar 

array formation. 

 

1. Planar Array Formation using Concurrent Approach 
Based on the concurrent technique presented in Section A, we expand it to the 

construction of a planar array (in two dimensions) for 9 nodes. The concept is to use the 
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distance-based equations to describe the shape of the structure required. For increased 

beamforming gain, we require more nodes to participate in the array as elements. 

For constructing a planar array with 9 nodes we require them to be positioned as 

shown in Figure 14 (ideal square shape). The CH may be in one of three possible 

positions (marked with red filled circle).  
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Figure 14.   Inter-node distances of Planar Array: Possible Positions of the CH in red and 
the Participating Nodes are hollow circles 

 

Any other combination in the construction of a 3 3×  planar array would be a 

mirror image of one of the arrays in Figure 14. This is shown in Figure 15, where the 

solution marked with blue nodes has three mirror images (marked with green) which 

equate to the same solution set in the field. For each of the three possibilities, we 

calculate the error metric and choose the one with the least error. 
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Figure 15.   Solution and mirror images of the solution in the field 

 

To form a planar array, we have to find the inter-node distances for each node 

pair. In the case of the CH in Figure 14 (a), the various distances for a perfect planar 

array are as shown in the Figure 16. 
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Figure 16.   Node Distances from the CH in a 3 3×  Array  
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Solving only for inter-node distances between the CH and all other nodes, we 

have the following equation to be minimized 

     
| ( , ) | | ( , ) | | ( , ) 5 | | ( , ) 2 |

2 2 2

| ( , ) | | ( , ) 2 | | ( , ) 5 | | ( , ) |
2 2

CH d S i d S j d S l d S m

d S n d S p d S q d S r

λ λ λε λ

λ λλ λ

= − + − + − × + − × +

− + − × + − × + −
          (19) 

Each factor of the above equation must be minimized; the sum of all factors must be 

optimized by again solving for the minimum.  

Following the same procedure for the remaining nodes, we have  

                     min | |CH i j l m n p q rε ε ε ε ε ε ε ε ε ε= + + + + + + + + .                                (20) 

where CHε is the inter-node error to be minimized for distances between CH and every 

other node in the array, iε  is likewise the inter-node error to be minimized with Node i  

as the anchor node, and so on. Combining all the inter-node error returns, we have the 

total inter-node error to be minimized as given by 

| ( , ) | | ( , ) | | ( , ) 5 | | ( , ) 2 |
2 2 2

| ( , ) | | ( , ) 2 | | ( , ) 5 | | ( , ) |
2 2

| ( , ) | | ( , ) 2 | | ( , ) | | ( , ) 2 |
2 2 2 2

| ( , ) 5 | | ( , ) | | ( , ) 5 |
2 2

| ( ,

d S i d S j d S l d S m

d S n d S p d S q d S r

d i j d i l d i m d i n

d i p d i q d i r

d j l

λ λ λε λ

λ λλ λ

λ λ λ λ

λ λλ

= − + − + − × + − × +

− + − × + − × + − +

− + − × + − + − × +

− × + − + − × +

) | | ( , ) 2 | | ( , ) 5 | | ( , ) |
2 2 2

| ( , ) 5 | | ( , ) 2 | | ( , ) | | ( , ) |
2 2

| ( , ) | | ( , ) 2 | | ( , ) 5 |
2 2 2

| ( , ) | | ( , ) 2 | | ( , ) | | ( , ) 2 |
2 2 2 2

| ( , ) 5 |
2

d j m d j n d j p

d j q d j r d l m d l n

d l p d l q d l r

d m n d m p d m q d m r

d n p

λ λ λ λ

λ λλ λ

λ λ λ

λ λ λ λ

λ

− + − × + − × + − +

− × + − × + − + − +

− + − × + − × +

− + − × + − + − × +

− × | ( , ) 2 | | ( , ) |
2 2

| ( , ) | | ( , ) | | ( , ) |
2 2

d n q d n r

d p q d p r d q r

λ λ

λ λλ

+ − × + − +

− + − + −

                      (21) 
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Equation (19) applies only to the geometry of Figure 14 (a) (where the CH is at 

the South West corner of the array). For the other two geometries (CH in the center or 

CH in the base), the equations for minimization can be formed in a similar fashion. 

The solution to our problem would be the nodes that minimize (19). Theoretically, the 

nodes that would provide this result would be positioned as in Figure 14 (a). This 

approach would examine all the possible node arrangements within the cluster, and the 

solution selected would be the one that best approximates the theoretical case. 

 

2. Planar Array Formation using the Least Squares Line Fitting 
Approach 

In this approach, first, a least squares fitted line is formed for the nodes positioned 

within the CH’s communication distance (i.e., the cluster) and is an extension of the 

linear array construction using the least squares line fitting. Next, a set of lines (lines 

1 2, , etcγ γ .), as needed, that are parallel to Line γ  are obtained. These parallel lines, of 

course, are spaced / 2λ  distance apart.  

Figure 17 (a) shows the nodes within the cluster and the least squares fitted line γ  

as described in the previous section and the two parallel Lines 1 2andγ γ  at a distance of 

λ/2 on both sides. The heavy dots (marked with black) are the ideal node locations, which 

are relative to the projection of the CH on Line γ and are exactly λ/2 distance apart. 

Line γ Line γ

2Line γ 2Line γ

1Line γ 1Line γ

CH CH

 
Figure 17.   Nodes in Cluster to form a 3 3×  Planar Array: (a) Least Squares Fitted Lines 

and Ideal Node Positions; (b) Selected Sensor Nodes that are Closest to the Ideal 
Locations 
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To form the desired planar array, we select the nodes that are positioned closest to 

the dots on Lines 1 2, andγ γ γ . A possible solution is illustrated as nodes marked with 

green in Figure 17 (b). 

Seeking another (possibly better) solution, we rotate the three parallel lines 

counter clockwise by an angleϕ , which again is determined heuristically based on the 

node density in the cluster (larger angles for smaller node density and smaller angles for 

larger node density). The rotated lines and a possible solution are illustrated in Figure 18. 

Taking a careful look at Figure 18 (b), we observe that only one different node is selected 

when compared with the previous solution found in the Figure17 (b) above (the node in 

the North West corner, numbered as 6, is different).  

'Line γ

'
1Line γ

'
2Line γ

'
1Line γ

'Line γ

'
2Line γ

CH
CH

 
Figure 18.   Fitted Lines Rotated by an Angle ϕ  in the counter clockwise direction: (a) 

Least Squares Fitted Lines and Ideal Node Positions; (b) Selected Sensor Nodes 
that are Closest to the Ideal  

After a heuristically-determined number of rotations, five in our simulations, the 

best solution with the minimum error, in terms of distance from the edges, is selected. 

These nodes will then be assigned to coordinate their transmissions to perform 

beamforming and transmit the data to a distributed analysis center through the overhead 

UAV. 

 

C. SUMMARY 

In this chapter, we proposed methods of forming linear and planar arrays in a 

sensor field without the aid of GPS or other location knowledge. In the linear array 
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formation, we presented three methods: iterative, concurrent and line fitting approach. 

Expanding the concurrent and the line fitting approaches, we proposed two approaches 

for planar array formation.  

 In the next chapter, we present the simulation results to evaluate the performance 

of the array formation techniques. 
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IV. PERFORMANCE ANALYSIS AND SIMULATION RESULTS  

This chapter presents and evaluates the performance of the proposed approaches 

for constructing an array in a WSN field. First, we present a set of performance 

evaluation metrics used in the simulations. Next, the simulation model is discussed and, 

finally, the simulations results for the proposed methods of Chapter III for the 

construction of linear and planar arrays are presented. For the linear array, the results 

presented are from the iterative and the line fitting approaches. For the planar array, the 

results are presented for the line fitting approach. 

 

A. PERFORMANCE EVALUATION METRICS 
The results from the simulations must be analyzed to determine the effectiveness 

of the approach in forming a linear array. The array that is constructed in the field must 

be compared with an array that is perfectly linear with inter-node spacing of / 2λ . The 

nodes that are in perfect linear positions and have interspacing distance of λ/2 would give 

the highest gain. 

To evaluate the performance of each method, we introduce a set of metrics used 

for calculating the errors of the array formed. These metrics will be used to evaluate the 

performance based on the simulation results. The three proposed error metrics are defined 

as follows. 

1. Perpendicular Distance, pε : a measurement of the perpendicular 

distance of each node of the constructed array from the line with ideal node locations. 

2. Inter-node Spacing Error, sε : a measurement of the difference in inter-

node spacing along the line between the orthogonal projection of the nodes and the ideal 

positions at multiples of / 2λ . 

3. Total Error, tε : a measurement of the Euclidean distance between the 

nodes and the ideal positions on the line representing the perfect array 

The remainder of this section describes the details of the calculation of these 

metrics. All three metrics are used to evaluate the results from Matlab simulations for 
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linear array using the iterative and the line fitting methods. Before attempting to 

determine the metrics, we need to determine a reference line. In the case of the least 

squares line fitting approach, the reference line is the fitted line. For the iterative 

approach, a line needs to be determined for computing the metrics.  

 

1.  Determination of the Reference Line 

The reference line is obtained using the least squares regression approach for the 

selected nodes. For example, Figure 20 illustrates a five-node array with a reference line. 

The nodes of the constructed array introduce errors in both dimensions. The ideal 

positions are assumed to lie on the line with inter-node distances of / 2λ .  

Let S  represent the set of ideal node positions along the reference line:  

                                                           { } {( , )}i i iS S x y= =                                               (22) 

and let 'S  represent the actual node positions around the line defined as  

                                                            ' ' ' '{ } {( , )}i i iS S x y= =                                              (23) 

where all positions are relative.  
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Figure 19.   Sensor Nodes and the Reference Line 

 
 

Given the node position data ' '( , )i ix y  for n  nodes, a regression line using least 

squares is obtained to represent the reference line. The Matlab function regress ( , )X y  is 

used for this purpose, where y  is a vector of the y-coordinate values 

                                                           

'
1
'
2

'

.

.

n

y

y
y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                               (24) 

and X is an 2n×  matrix defined as  
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                                                             (25) 

and n is the number of nodes in the array. 

The function solves the equation  

                                                              y Xc=                                                               (26) 

where c is a 2 1×  vector 

                                                          1

2

c
c

c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                               (27) 

with 2c representing the slope of the line and 1c the offset from the origin. The reference 

line can be expressed as  

                                                             2 1y c x c= + .                                                       (28) 

Without loss of generality, we can assume that the CH is located at the origin and that 

1 0c = . 

 

2.  Perpendicular Distance Error Metric 
The first error calculated, which gives an estimate of the achieved approximation 

in linearity of the nodes in simulation, is the perpendicular distance of the nodes from the 

reference line. Figure 21 illustrates the perpendicular distances. 

The slope of the line perpendicular to the reference line is 
2

1
c

− . For a given node 

i , the intersection of the perpendicular line and the reference ( , )
i ip px y  is obtained by 

solving the two line equations  

                                                              2 1y c x c= +                                                        (29)         

                                                             3
2

1y x c
c

= − +                                                      (30) 

where 3c  is the offset of the perpendicular line associated with node i . The set of these 

intersections is { } {( , )}
i i ip p p pS S x y= = . The perpendicular distance is then given by [16] 
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                                           ' 2 ' 2( ) ( )
i i ip i p i px x y yε = − + − .                                     (31) 

The average perpendicular error given by  

                                                              
1

1
i

n

p p
nn

ε ε
=

= ∑                                               (32) 

is used as the metric to represent the perpendicular distance error. Even though this 

approach provides a metric for comparing the different arrays, it does not give us any 

information regarding the inter-node distances. To evaluate the inter-node spacing, we 

introduce the second metric in the next section.  
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Figure 20.   Perpendicular Distance Error Measurement 
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3.  Inter node Spacing Error metric 

The inter-node spacing between the successive ideal node positions along the 

reference line is / 2λ . Figure 22 illustrates the spacing among the ideal nodes as well as 

the spacing error (along the line) for the actual nodes.  
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Figure 21.   Internode Spacing Error between Ideal Node Positions and Perpedicular 

Projections of the Actual Nodes along the Reference Line. 
 

 

The inter-node spacing error for the thi  node is given by  

                                            2 2( ) ( )
i i is i p i px x y yε = − + −                                               (33) 

and the internode spacing error metric represented by the average is given by 

                                                               
1

1
i

n

s s
nn

ε ε
=

= ∑ .                                                    (34) 
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The frequency and density that we use effect the inter-node spacing error. It 

cannot be used to compare simulations where the frequency of operation is different. 

  

4.  Total Distance Error Metric 

The total error for the thi node is calculated as  

                                                  ' 2 ' 2( ) ( )
it i i i ix x y yε = − + −                                       (35) 

where ( , )i ix y  represents the ideal position of the thi node and ' '( , )i ix y  represents the 

actual position. Figure 23 illustrates the individual total errors. The total error metric tε is 

the average of all the individual errors given by  
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= ∑ .                                               (36) 
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Figure 22.   Total Error Calculation 
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5. Planar Distance Error 

In the case of planar antenna array construction, the calculation of error in the 

resulting array is performed by calculating the Euclidean distance between the ideal 

position and the actual position of the node. The ideal positions of the nodes are on a 

square grid as described in Chapter III. 

Let 'S be the set of position of all nodes in the array 
' ' '' { } {( , )}, 1, 2,..., and j=1, 2,...,ij i jS S x y i n n= = =          

and let S  be the set of the ideal node positions (on the grid) 

{ } {( , )}, 1,2,..., and j=1,2,...,ij i iS S x y i n n= = =  

The Euclidean distances between a node and idel position is given by  

                                              ' 2 ' 2( ) ( )ij i i j jx x y yε = − + −                                              (37) 

The Euclidean distance error for a 3 3× planar array is illustrated in Figure 23 as between 

a node and the corresponding ideal position. The CH is aligned to the center of the array 

and the ideal position and errors of the remaining eight nodes are calculated.  
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Figure 23.   Calculated Position Error for a Planar Antenna Array 

 

The total error  tε  is the average of all the individual errors given by  

                                                         2
1 1

1 n n

t ij
i jn

ε ε
= =

= ∑∑                                                       (38) 

where the error corresponding to the CH (in Figure 24, 22ε )  is zero. 
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B. SIMULATION MODEL 

A simulation model was developed in MATLAB code to study and compare the 

linear and planar array formation for multiple scenarios using different communication 

frequencies, communication range and node densities. All simulations were performed in 

an area of 210 10 meters×  with communication ranges of 2 and 4 meters for both linear 

and planar array formation. The linear array formation was simulated for 7 and 9 nodes 

while the planar array was 3 3×  and 4 4× . Node density ranged from 100 to 1500 and 

frequencies of  300 MHz and 900 MHz were used in the simulations. 

 

1. Inter-node Distance and Density in the Field 

The / 2λ  inter-node spacing distance we are trying to achieve between adjacent 

nodes depends only on the communication frequency of the nodes. We have  

       
2 2

cd
f

λ
= =                                                           (39) 

where d is the inter-node spacing, c  is the speed of light ( 83 10 m/s× ), f is the 

communicating frequency of the nodes (used to perform beamforming) and λ  is the 

effective wavelength. The appropriate inter-node spacing decreases as the communication 

frequency of the nodes increases. The higher the frequency used for inter-node 

communication purposes, and thus for beamforming purposes, the lower the inter-node 

distance must be. This results in the need for higher density in the specified subgroup, 

which is assigned to form the desired linear or planar array. 

The density depends on the size of the field and the total number of the nodes that 

we are capable of deploying in the area. Recall from (1) that the density of the nodes 

would be higher if the number of nodes is relatively high and the sensor field is small. 

The opposite would occur if the number of nodes is relatively low and the field is large.  

The size of the field used to perform the simulations was 210 10 meters× , and 

communication range of the nodes was chosen to be 2 meters for the 7-node array and 4 

meters for the 9-node array case. This results in a field percentage of coverage for each  
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node of 2 2 2 2/ 2 /10 0.1256 or 12.56%r Aπ π= =  of the whole sensor network area for the 

2-meter communication distance and 2 2 2 2/ 4 /10 0.5024 or 50.24%r Aπ π= =  for the 4-

meter case. 

The number of nodes used in the simulation ranged from 100 to 1500 in steps of 

100 for each simulation. A uniform distribution was assumed within the field. As the 

number of nodes in the area increases, the density also increases.  This resultant node 

density within the cluster is shown in Table 1. This is the number of nodes in the 

transmission radius of the CH (i.e., cluster). As we can see in Table 1, using (1), the 

number of nodes within the communication radius of the CH varies from approximately 

12 to 180 nodes for communication radius 2 meters and 50 to 753 for communication 

radius 4 meters. 

Number of 
Nodes 
( 210× ) 

Average cluster size 
(2m comm. radius) 

Average cluster size 
(4m comm. radius) 

1 12.56 50.24 

2 25.12 100.48 

3 37.68 150.72 

4 50.24 200.96 

5 62.80 251.2 

6 75.36 301.44 

7 87.92 351.68 

8 100.48 401.92 

9 113.04 452.16 

10 125.60 502.4 

11 138.16 552.64 

12 150.72 602.88 

13 163.28 653.12 

14 175.84 703.36 

15 188.40 753.6 
Table 1.   Density in the Sensor Field and Number of Nodes in a  Cluster in a 

210 10m× field 
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Table 1 is graphically represented in Figure 26, where we can see how the number 

of the nodes within a cluster increases with the total number of nodes in the sensor field 

of 210 10 meters×  for CH  communication radii of 2 and 4 meters. 
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Figure 24.   Number of Nodes within a  Cluster for 2m and 4 m Communication Distance 

for a 210 10m× sensor field 

 

 

2. Simulation Model 
A simulation model was developed in MATLAB to evaluate the proposed linear 

and planar antenna array formation methods in a wireless sensor field. Figure 25 presents 

the flowchart of the simulation. 

The flowchart in Figure 25 has two main parts. The first part is the construction 

and evaluation of a linear antenna array, and the second separate part is the construction 

and evaluation of a planar antenna array. Both parts start with the construction of the 

simulation sensor field, the uniform deployment of the sensor nodes and, finally, the 

selection of the CH. 

Initially, the sensor field is formatted and a desired number of nodes is distributed 

uniformly into it. According to the selected communication distance of the nodes, the 

links among them are formed. Two methods are performed for the selection of the linear 

array: the iterative approach and the least squares line fitting approach. The iterative 
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approach antenna array initially forms a 3-node linear array and then, according to the 

desired total number of nodes, each additional element of the array is added up to the 

total number of nodes. 

Sensor Field 
Deployment

Find 3 nodes linear array

Determination of Comm Distance and 
Clusterhead

Next Node?

Number of Nodes in the 
Linear Array

Compute ErrorsBeampattern Evaluation Error_results

Line 
Fitting 
Method

Iterative 
Method

Linear Antenna 
Array

Number of Nodes in 
the Planar Array

Rotations 
Completed?

Compute Errors

Beampattern Evaluation

Error_results

Planar Antenna 
Array

Linear

Planar Planar or 
Linear ?

Iterative or 
Concurrent 
Method?

Rotations 
Completed? Find Desired Array

Find Desired Array

Iterative

Line Fitting

Find Desired Array

Evaluation

NO

YES

Rotate Line

Add Node

NO

YES

Evaluation

Rotate Grid

NO

Line Fitting Method

YES

 

Figure 25.   Simulation Model for the Construction and Evaluation of Linear and Planar 
Antenna Array 
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For the line fitting method, the regression line based on least squares is 

determined within the cluster and then the ideal node positions are marked. The algorithm 

evaluates each solution, and after a number of predetermined rotations, the solution that 

provides the best total error metrics is provided. A comparison is performed between the 

two solutions based on the metrics described earlier. 

For the construction of a planar array, the construction of the sensor field, the 

selection of CH and the selection of the connectivity of the nodes is performed as in the 

linear antenna array. Next, the least squares line fitting provides a number of solutions, 

based on the number of rotations selected. Finally, the solution that provides the best total 

error metric is selected. 

The MATLAB functions developed for this simulation are included in Appendix 

A. 

C. LINEAR ARRAY RESULTS  
Simulations were performed for both iterative linear array formation and the line 

fitting method for a variety of inputs (i.e., number of nodes in the field and frequency of 

operation). 1000 Monte Carlo runs for each case were performed and the average metrics 

were calculated. The area of the sensor network was 210 10 meters× , and the 

communication range of each node was 2 meters. Two frequencies of operation were 

used: 300 MHz and 900 MHz. The simulation input data are summarized  in Table 2. 

For each one of the four simulations, the number of nodes ranged from 100 to 

1500 and the resulting density ranged from 1 node / m2 to 15 nodes / m2. For each 

density, a Monte Carlo simulation of 1000 runs was performed and the mean of each of 

the three errors was calculated, using the metrics described earlier. 

Simulation Input Data 

Frequency (MHz) 300 300 900 900 

 λ/2 (m) 0.500 0.500 0.167 0.167 

Number of Runs (Monte Carlo) 1000 1000 1000 1000 

Sensor Field Dimensions (m) 10 10×  10 10×  10 10×  10 10×  

CH Communication Radius (m) 4 4 2 2 

Linear Array Size (# of nodes) 7 9 7 9 

Table 2.   Simulation Input Data for Linear Array Formation 
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1. Seven-node Array at 300 MHz 

The first simulation for linear array formation was performed at 300 MHz with an 

array size of 7 nodes for various densities in an area of 210 10 meters× . The 

perpendicular distance, inter-node spacing and total error are plotted in Figures 26 to 28. 

The green line represents the line fitting approach and the red line represents the iterative 

approach.  
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Figure 26.   Average Perpendicular Distance Error pε  for 300 MHz and 7 Nodes Linear 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 27.   Average Inter-node Spacing Error sε  for 300 MHz and 7 Linear Nodes 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 28.   Average Total Error tε  for 300 MHz and 7 Nodes Antenna Array for 1000 

Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field 
 



48 

As we can see, all three error metrics are significantly lower for the line fitting 

approach compared with the iterative approach. Both methods show improvement in 

linearity with increase in density.  

The error metrics for both methods are greater for lower densities with the 

greatest at 100 nodes in the 210 10 m×  field. The minimum errors are obtained for the 

highest density of 1500 nodes in same field. The line fitting approach remains almost 

steady after a density of 600 nodes, as compared with the iterative approach for which the 

errors continue to decrease for densities higher than 600 nodes, and appears to stabilize 

only after about 1200 nodes in the field. 

The average beampattern for multiple node densities can be plotted to show the 

effectiveness of the line fitting method in the construction of a linear array [17]. Figures 

29 to 31 present the average beampattern for field densities of 300, 600 and 1000 nodes. 

The blue line in Figures 29 to 31 represents the ideal array beampattern when the 

nodes are in the ideal positions (i.e., inter-node distance of / 2λ  with no linearity error). 

The red line is the result of the average beampattern for the simulations performed (i.e., 

actual positions of the nodes by using the line fitting method for constructing the 7-node 

linear array). 

Comparing the beampatterns for the three different densities, we see that for 300  

nodes the main gain lobe is reduced and the side lobe gain is increased. For 600 nodes, 

the main lobe gain is close to ideal and the side lobe gain has improved. The 1000-node 

beampattern shows further improved main lobe as compared with the 600-node case and 

the nulls show significant improvement. At the density of 600 nodes/ 2m  the results show 

the best sidelobe level relative to the main beam. 



49 

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n 

(d
B)

 

 
Ideal Linear
Approximate Linear

 
Figure 29.   Average Beampattern for Uniform and Approximately Linear 7 Elements 

Array at 300 MHz for 300 Nodes for 1000 Monte Carlo Runs 
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Figure 30.   Average Beampattern for Uniform and Approximately Linear 7 Elements 

Array at 300 MHz for 600 Nodes for 1000 Monte Carlo Runs 
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Figure 31.   Average Beampattern for Uniform and Approximately Linear 7 Elements 
Array at 300 MHz for 1000 Nodes for 1000 Monte Carlo Runs 

 
 

2. Nine-node Array at 300 MHz  
The second simulation was performed at 300 MHz for a 9-node linear array. 

Using the MATLAB function  Linear_line_fitting_comparison_iterative.m, we construct 

an array of 9 nodes for various densities in an area of 210 10 meters× . The perpendicular 

distance, inter-node spacing, and total error metrics are plotted in Figures 32 to 34. The 

green line represents the line fitting approach and the red line the iterative approach. 

For the iterative approach, the perpendicular distance error pε  is  seen to increase 

compared to the 7-node simulation at the same densities (see Figure 32).  
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Figure 32.   Average Perpendicular Distance Error pε  for 300 MHz and 9 Nodes Linear 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 33.   Average Inter-node Spacing Error sε  for 300 MHz and 9 Nodes Linear 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 34.   Average Total Error tε  for 300 MHz and 9 Nodes Linear Antenna Array for 

1000 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field 
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The inter-node spacing error for the line fitting approach for both the 7- and 9- 

node arrays (see Figures 27 and 33) is seen to be in same range between 0.1 and 0.2 

meters. The difference in the perpendicular and inter-node spacing error for both methods 

is also reflected in the total error for both simulations (see Figures 28 and 34) with the 

iterative approach method yielding in larger errors. 

Figure 35 represents the average beampattern for the line fitting method (red line) 

at a density of 600 nodes. The 600-node density is selected because it is the point where 

the total error begins to stabilize. As we can see, the beampattern approaches the ideal 

case in the main lobe with a slight increase in the side lobes. The average beampattern 

improves for higher node densities.  

Comparing the results of both error metrics and beampatterns, we conclude that 

the performance improves with the density and that the line fitting approach provides 

better results in all cases when compared with the iterative method.  

Additionally, the comparison between the 7- and 9-node simulations shows that a 

slight increase in error metrics for the 9-node case, but the average beampattern for the 9-

node case is better than that of the 7-node array. 
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Figure 35.   Average Beampattern for Uniform and Approximately Linear 9 Elements 
Array at 300 MHz for 600 Nodes for 1000 Monte Carlo Runs 
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3. Seven-node Array at 900 MHz  

The third linear array formation simulation was performed at a higher frequency 

of 900 MHz for a 7-node case. We construct an array of 7 nodes for various densities in 

an area of 210 10 m× . The perpendicular distance, inter-node spacing and total error are 

plotted in Figures 36 to 38. The green line represents the line fitting approach and the red 

line the iterative approach. 
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Figure 36.   Average Perpendicular Distance Error pε  for 900 MHz and 7 Nodes Linear 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 37.   Average Inter-node Spacing sε  Error for 900 MHz and 7 Nodes Antenna 

Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes in the 
Sensor Field 
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Figure 38.   Average Total Error tε  for 900 MHz and 7 Nodes Antenna Array for 1000 

Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field 
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Figure 39 presents the average beampattern for the line fitting method (red line).  

The 600-node density is once again selected because from that point on the total error is 

nearly stabilized (below 0.23 meters). As we can see, the beampattern approaches the 

ideal case in the main lobe with an increase in the second and third side lobes. As in 

previous cases,  the average beampattern approaches the ideal pattern for higher node 

densities in the field. 

Summarizing the results of this simulation, we conclude that performance 

improves with density, but the line fitting method shows less improvement over the 

iterative method than in the previous cases. Additionally, the beampattern shows that for 

increased frequency and the same number of nodes, the performance degrades since the 

required inter-node spacing is reduced.  
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Figure 39.   Average Beampattern for Uniform and Approximately Linear 7 Elements 

Array at 900 MHz for 600 Nodes for 1000 Monte Carlo Runs 
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4. Nine-node Array at 900 MHz  

The final linear array formation simulation is performed at 900 MHz for 9 nodes 

for various node densities in a field of 210 10 meters× . The perpendicular distance, inter-

node spacing and total error are plotted in Figures 40 to 42. The green line represents the 

line fitting approach and the red line the iterative approach. 

In this case, the performance increases with the density for both methods. The line 

fitting method maintains the same performance while the iterative solution does not 

improve when compared with the 7 nodes case for the same frequency. From the 

beampattern, we conclude that for the same frequency, more nodes in the array improve 

the performance.  
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Figure 40.   Average Perpendicular Distance Error pε  for 900 MHz and 9 Nodes Linear 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 41.   Average Inter-node Spacing Error sε  for 900 MHz and 9 Nodes Linear 

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes 
in the Sensor Field 
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Figure 42.   Average Total Error tε  for 900 MHz and 9 Nodes Linear Antenna Array for 

1000 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field 
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Figure 43 shows the average beampattern for the line fitting method (red line). As 

in previous studies, the 600-node density is selected and we can see that the beampattern 

has improved compared to the 7-node case (see Figure 43). For the same frequency, the 

performance has improved as more nodes are used in the array. 

 

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n 

(d
B)

 

 

Ideal Linear
Approximately Linear

 
Figure 43.   Average Beampattern for Uniform and Approximately Linear 9 Elements 

Array at 900 MHz for 600 Nodes for 1000 Monte Carlo Runs 
 
 

D.  PLANAR ANTENNA ARRAY RESULTS AND ANALYSIS 

Planar array formation of 3 3×  and 4 4×  nodes was performed using Monte Carlo 

simulations of 100 runs for each case. The area of the sensor network was 210 10 meters×  

and the communication radius of each node was 4 meters. We used an operational 

frequency of 300 MHz, which results in an inter-node spacing of 0.5 meters. The 

simulation input data are shown in Table 8. 
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Simulations Input Data 

 λ/2 ( m ) 0.5 0.5 

Number of Runs (Monte Carlo) 100 100 

Sensor Field Dimensions ( 2m ) 10 10×  10 10×  

Clusterhead Radius ( m ) 4 4 

Planar Array Formation (# of nodes) 3 3×  4 4×  

Table 3.   Simulation Parameters used for Planar Antenna Array Formation 
 
 

1. Planar Array of  3 3×  Nodes at 300 MHz  

The first planar array formation simulation was performed for a 3 3×  grid of 9 

nodes for a variety of densities in an area of 210 10 meters× . The array formation method 

used is the line fitting described in the previous chapter. The results for all densities are 

plotted in Figure 44. We can see that the total distance error is slightly below 0.1 meters 

for the higher densities.  
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Figure 44.   Average Total Error tε  for 300 MHz and 3 3×  Nodes Planar Antenna Array 

for 100 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor 
Field 
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The average beampattern is plotted to show the effectiveness of the line fitting 

method in the construction of a planar array [17]. The average beampattern for node 

densities of 300 and 800 are presented in Figures 45 and 46, respectively. Comparing 

Figures 45 and 46, we observe an improvement in the side lobe level for the case of 800 

nodes. 
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Figure 45.   Average Beampattern for 3 3× Uniformly Excited Planar Array at 300 MHz 

for 300 Nodes for 100 Monte Carlo Runs 
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Figure 46.   Average Beampattern for 3 3×  Uniformly Excited Planar Array at 300 MHz 

for 800 Nodes for 100 Monte Carlo Runs 

 

2. Planar Array of 4 4×  Nodes at 300 MHz  
The second planar array formation simulation performed was for a 4 4×  grid of 

16 nodes for a variety of densities in an area of 210 10 meters× . The array formation 

method used was again line fitting. The total distance error is plotted in Figure 47. 

Comparing Figures 44 and 47, the 3 3×  and 4 4×  planar arrays at the same 

frequency of 300 MHz, we observe slightly increased total error for the 4 4×  array at all 

densities. The 3 3×  planar array provides error below 0.1 m for high densities above 

1100 nodes (see Figure 44). The 4 4×  case in Figure 47 limits the error to just above 0.1 

m for the highest density of 1500 nodes used in the simulations. 
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Figure 47.   Average Total Error tε  for 300 MHz and 4 4×  Nodes Planar Antenna Array 

for 100 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor 
Field 

 

Average beampatterns for densities of 300 and 800 nodes are shown in Figures 48 

and 49, respectively. In Figure 49, we observe a slight improvement in the main lobe as 

well as the side lobes for the 800-node case over the 300-node case.  
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Figure 48.   Average Beampattern for 4 4×  Uniformly Excited Planar Array at 300 MHz 

for 300 Nodes for 100 Monte Carlo Runs 
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Figure 49.   Average Beampattern for 4 4×  Uniformly Excited Planar Array at 300 MHz 

for 800 Nodes for 100 Monte Carlo Runs 
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E. SUMMARY 

In this chapter, we first presented the performance evaluation metrics for 

comparing the array formation methods. Three metrics used to evaluate the performance 

of the proposed linear array techniques were the perpendicular distance, the inter-node 

spacing and the total distance error. In the planar array formation, a total distance metric 

was used. 

The simulation results were presented and demonstrated the effect of the sensor 

node density, frequency of operation, and number of elements in the construction of the 

array. The average error metrics  in the construction of both the linear and planar arrays 

decreased as the density of nodes increased for all simulations. Also, the line fitting 

method provided improved performance for all cases compared with the iterative method. 

Additionally, for the same frequency, and as more nodes were added to the array, the 

total error decreased slightly with density for the line fitting method. Total error increased 

significantly for the iterative method for both operating frequencies as more nodes are 

added. Finally, for the same number of nodes in the array, the error metrics of the 

iterative method decreases with density while the line fitting method shows very little 

difference. 

For the planar array formation, the line fitting method is used in all cases and the 

total error decreased when the node density in the area was increased. The 4 4×  planar 

array provided slightly increased total error over the 3 3×  planar array, but the additional 

nodes resulted in improved beampattern.  
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V. CONCLUSIONS 

Wireless sensor networking (WSN) is a relatively new field of research with 

many applications, both military and commercial. In the military, WSNs could be used in 

hostile environments to minimize the need for human presence. A wireless sensor 

network consists of a large number of small nodes that are deployed in an area of interest 

for collecting information. A subgroup of the deployed nodes will then coordinate their 

transmissions through beamforming to achieve improved gain. The information, collected 

by the WSN, is relayed to an unmanned aerial vehicle (UAV), which cooperates with the 

transmission beam of the network.  

This work investigated the formation of arrays of nodes in a randomly deployed 

sensor field with the main objective of evaluating different approaches for linear and 

planar array formation. By selecting appropriate nodes in the sensor field, the goal of 

each approach was to form the best possible arrays in order to achieve increased 

beamforming gain, thus communication distances. A model was developed and 

implemented in MATLAB to simulate the linear and planar array formation. Results were 

provided to compare formation methods for both linear and planar arrays.  

 

A. SIGNIFICANT RESULTS 
Results showed that the proposed line fitting approach to array formation 

demonstrated significant performance improvement over the existing iterative approach 

to construct a linear array. Also, the average position errors decreased as the node density 

increased in the construction of a linear and/or planar array.  

Higher operating frequencies made no significant difference in linearity of the 

array in the line fitting method but affected the error metrics of the iterative method. For 

the same operating frequency, the beampattern of the line fitting method improved as 

more elements are used in the array construction. 
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The line fitting approach was expanded to planar array formation. The simulations 

performed for 3 3×  and  4 4×  node  arrays indicated that the average total error metric 

increased slightly in the 4 4×  case, but the beampattern showed an improvement as more 

nodes were added to the array.   

 

B. FUTURE WORK 
It was assumed in this work that the nodes in the sensor field have only 

knowledge of their inter-node distances. The construction of a local coordination system 

and its effects on the construction of a linear and planar antenna array may be 

investigated. 

The error ε  measured in this thesis is based on geometrical calculations. A future 

investigation at pattern degradation in terms of electrical error 2πε
λ

 may be examined. 

This would allow comparison of results at different frequencies using different number of 

elements and different sensor node densities. 

The use of complex weights may be also investigated as a way to compensate for 

pattern degradation in uniformly excited arrays and to lower sidelobe level by tapering 

the excitation. 

The sensor field was assumed to be a flat surface in this thesis. The effect of 

ground elevation on nodes’ position errors was not examined in this study. The 

implementation and deployment of the methods proposed in this thesis extended to 

uneven surfaces is a natural next step in this research effort. Existing theory on the effect 

of random surface errors on antenna gain and sidelobe level [18] should be investigated 

to determine if it can be applied to sensor networks on an uneven surface. 
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APPENDIX  

This Appendix includes MATLAB code used in this thesis work. The various 

functions used are briefly described. The main MATLAB program is sensor_array.m, 

which handles all the sub-programs described below.  

Plot_nodes.m 

This program simulates an area field (with given dimensions) in which the desired 

number of nodes are uniformly distributed. 

Add_connectivity.m 

This program selects the pairs of nodes that communicate among them, according a given 

communication radius for the nodes. 

Find_clusterhead.m 

This program counts the number of nodes that each node is connected with and one with 

the highest connections (node neighbors) is selected as the CH. 

Three_element_center.m and Three_element_end 

These two programs select the first three nodes, including the CH, subject to the criteria 

of linearity and inter-spacing distance. The first is when the CH in the center of three 

nodes and the second is when the CH is on one of the ends. 

Add_array_node.m 

This program selects the next nodes that satisfy the criteria of linearity and inter-node 

spacing. The selection is done for one node at the time. 

Linear_line_fitting_comparison_iterative.m 

Initially, this program selects an iterative solution to form the array and then controls the 

lines.m function. Next, it implements the line fitting approach to the nodes within the 

communication radius of the CH (cluster) and selects the nodes that are closest to the 

ideal positions. After the desired number of rotations, according to the resulting linearity 

error, the best line fitting solution is selected. 
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Line_fitting.m 

This function evaluates and compares the selected linear arrays (as outlined in Chapter 

III) for both the line fitting method and the iterative approach. 

Planar_array_iterative.m 

This program is an extension of the Linear_least_square.m for the planar array. The best 

planar array is selected based on the total error metrics of multiple solutions. This 

function also calculates the Euclidean distance error for the planar array. 

Planar_lines.m 

This function implements the line fitting method and the rotations in the sensor field and 

provides the results to Planar_array_iterative.m for evaluation. 

Beamf_comparison.m 

This function computes the average beampatterns for the line fitting approach in 

comparison with the ideal arrays. [17] 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Linear_line_fitting_comparison_iterative.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format long 
clear all 
clc 
close all 
  
H=1; 
for iii=1:H 
n=200;     %number of nodes in the field 
r=2.8;     %communication distance radius of each node 
X=10;      %X and Y field dimensions 
Y=10; 
f=300;     %communication frequency among nodes 
q=9;       %number of nodes in the array 
  
[x_vals,y_vals] = plot_nodes(n,X,Y); 
  
[connected, distance] = add_connectivity(n, r, x_vals, y_vals); 
  
clusterhead = findclusterhead(connected, x_vals, y_vals, r, n); 
  
%Start of iterative solution 
[linear_array_3,d_3] = three_element_CH_center_v1(clusterhead, x_vals, 
y_vals,... 
    connected, distance,f,q); 
 
% Find a good linear array with clusterhead at end for q=3 
[linear_array_4,d_4] = three_element_CH_end_v1(clusterhead, x_vals, 
y_vals,... 
    connected, distance,f,q);  
  
%Find the best 3 nodes linear array whith the constrain of lamda /2 and 
annotate  
%the array on the plot 
if   d_3==inf & d_4 == inf  
    h = errordlg(... 
        'The algorithm can not determine a n-element array with the 
current CH',... 
        'Sensor Network') 
elseif d_3 == inf 
    antenna_array2 = linear_array_3; 
elseif d_4==inf 
    antenna_array2 = linear_array_4; 
elseif d_3>d_4 
    antenna_array2 = linear_array_4; 
else  
    antenna_array2 = linear_array_3; 
end 
  
%plot the first three nodes of the iterative solution 
if (   min(d_3, d_4) ~= inf)  
    plot( [ x_vals(antenna_array2(1)) x_vals(antenna_array2(2) )] , ... 
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        [ y_vals(antenna_array2(1))  y_vals(antenna_array2(2)) ],'rx-', 
'LineWidth',2)  
    plot( [ x_vals(antenna_array2(2)) x_vals(antenna_array2(3) )] , ... 
        [ y_vals(antenna_array2(2))  y_vals(antenna_array2(3)) ],'rx-', 
'LineWidth',2)  
    hold on 
X_values_anten2=[x_vals(antenna_array2(1)), x_vals(antenna_array2(2)), 
x_vals(antenna_array2(3))]; 
Y_values_anten2=[y_vals(antenna_array2(1)), y_vals(antenna_array2(2)), 
y_vals(antenna_array2(3))]; 
format short 
 end 
  
%add one node at a time up to desired 
array_size=9; 
for i = 4:1:array_size 
   [antenna_array2, flag, d_tempf, X_values_anten2, Y_values_anten2] = 
add_array_node(antenna_array2, x_vals, y_vals,... 
    connected, distance,f, X_values_anten2, Y_values_anten2); 
format short 
  
X_values_anten2; 
Y_values_anten2; 
  
end 
hold on 
freq=f; 
intd= (((3*10^8)/(freq*10^6)))/2 ; 
figure(2) 
plot( x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,... 
    'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8) 
hold on 
  
clusterhead_neighbors = find( connected( clusterhead,:) == 1); 
  
index=size(clusterhead_neighbors,2); 
indexx=(1+size(clusterhead_neighbors,2)); 
daspect('manual') 
daspect([1 1 1]) 
axis([0 X 0 Y]) 
h = gcf; 
rect = [50, 65, 650, 620]; 
set(h, 'Position', rect); 
  
plot( x_vals(clusterhead_neighbors), y_vals(clusterhead_neighbors), 
'ko') 
 for i = 1:1:index 
     text( x_vals(i)+(X*10),y_vals(i)+(Y*1000),int2str(i), 'FontSize', 
8); 
 end 
  
hold on 
%Start of least squares line fitting solution 
X_col=[x_vals(clusterhead_neighbors) x_vals(clusterhead)]'; 
Y_col=[y_vals(clusterhead_neighbors) y_vals(clusterhead)]'; 
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XX=[ones(indexx,1) X_col]; 
XX2=[X_col]; 
YY=[Y_col]; 
c=XX\YY; 
arith=abs(c(2)*XX2-YY+c(1)); 
paran=sqrt(c(2)^2+1); 
d=arith/paran; 
f=mean(d); 
  
t=0:0.1:10; 
z=c(2)*t+c(1); 
 
k=[-(1/c(2)); y_vals(clusterhead)-(-1/c(2))*(x_vals(clusterhead))] ; 
r=k(1)*t+k(2); 
arithh=abs(k(1)*XX2-YY+k(2)); 
parann=sqrt(k(1)^2+1); 
dd=arithh/parann; 
ff=mean(dd); 
plot(t,z,'r-',t,r,'b-') 
  
hold on 
%Plot least square fitting and perpendicular lines left an right 
zz1=c(2)*t+c(1)+intd*(sqrt(1+(c(2))^2)); 
zz2=c(2)*t+c(1)-intd*(sqrt(1+(c(2))^2)); 
rr1=k(1)*t+k(2)+intd*(sqrt(1+(k(1))^2)); 
rr2=k(1)*t+k(2)-intd*(sqrt(1+(k(1))^2)); 
hold on 
plot(t,zz1,'r--',t,zz2,'r--'); 
hold on 
plot(t,rr1,'b--',t,rr2,'b--'); 
  
connected = zeros(index); 
distance = inf * ones(index); 
  
for i = 1:1:(indexx) 
    for j = (i+1):1:indexx 
            connected(i,j) = 1; 
            distance(i,j) = sqrt( (x_vals(i)-x_vals(j))^2  +  
(y_vals(i)-y_vals(j))^2 ); 
            d_epalithesh(i)=arith(i)/paran; 
    end 
     
end 
  
%FIND EDGES ON THE PARALLILOGRAM 
  
%Ast point  
xa=0; 
ya=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1); k(2)]; 
XYA=[xa ya]; 
XYA=inv(A)*B 
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%Bth point 
xd=0; 
yd=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYB=[xd yd]; 
XYB=inv(A)*B 
  
%2nd point 
xb=0; 
yb=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYC=[xb yb]; 
XYC=inv(A)*B 
  
%Bth point 
xd=0; 
yd=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYD=[xd yd]; 
XYD=inv(A)*B 
  
%2nd point 
xb=0; 
yb=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-2*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYE=[xb yb]; 
XYE=inv(A)*B 
  
%Bth point 
xd=0; 
yd=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+3*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYF=[xd yd]; 
XYF=inv(A)*B 
  
%2nd point 
xb=0; 
yb=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-3*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYG=[xb yb]; 
XYG=inv(A)*B 
  
  
%Bth point 
xd=0; 
yd=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+4*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYH=[xd yd]; 
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XYH=inv(A)*B 
  
%2nd point 
xb=0; 
yb=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-4*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYI=[xb yb]; 
XYI=inv(A)*B 
  
plot(XYA(2),XYA(1), 'bx', XYB(2), XYB(1), 'bx',XYC(2), XYC(1), 
'bx',XYD(2), XYD(1), 'bx',... 
    XYE(2), XYE(1), 'bx',XYF(2), XYF(1), 'bx',XYG(2), XYG(1), 
'bx',XYH(2), XYH(1), 'bx',XYI(2), XYI(1), 'bx') 
  
vv1=Inf 
for i=1:index 
    db=sqrt((XYB(2)-x_vals(clusterhead_neighbors(i)))^2+(XYB(1)-
y_vals(clusterhead_neighbors(i)))^2) 
     
    if db<vv1 
        vv1=db 
        end1=i 
    end 
end 
vv2=Inf 
for i=1:index 
    if i~=end1 
    dc=sqrt((XYC(2)-x_vals(clusterhead_neighbors(i)))^2+(XYC(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dc<vv2 
        vv2=dc 
        end2=i 
    end 
    end 
end 
  
vv3=Inf 
for i=1:index 
    if i~=end1 & i~=end2 
    dd=sqrt((XYD(2)-x_vals(clusterhead_neighbors(i)))^2+(XYD(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dd<vv3 
        vv3=dd 
        end3=i 
    end 
    end 
end 
vv4=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 
    de=sqrt((XYE(2)-x_vals(clusterhead_neighbors(i)))^2+(XYE(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if de<vv4 
        vv4=de 
        end4=i 
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    end 
    end 
end 
  
vv5=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 
    df=sqrt((XYF(2)-x_vals(clusterhead_neighbors(i)))^2+(XYF(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if df<vv5 
        vv5=df 
        end5=i 
    end 
    end 
end 
  
vv6=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 
    dg=sqrt((XYG(2)-x_vals(clusterhead_neighbors(i)))^2+(XYG(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dg<vv6 
        vv6=dg 
        end6=i 
    end 
    end 
end 
  
vv7=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6  
    dh=sqrt((XYH(2)-x_vals(clusterhead_neighbors(i)))^2+(XYH(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dh<vv7 
        vv7=dh 
        end7=i 
    end 
    end 
end 
  
vv8=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 
i~=end7  
    di=sqrt((XYI(2)-x_vals(clusterhead_neighbors(i)))^2+(XYI(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if di<vv8 
        vv8=di 
        end8=i 
    end 
    end 
end 
  
d_total1=vv1+vv2+vv3+vv4+vv5+vv6+vv7+vv8  
%plot first solution 
plot( [ x_vals(clusterhead) x_vals(clusterhead_neighbors(end1)) ] , ... 
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      [ y_vals(clusterhead)  y_vals(clusterhead_neighbors(end1)) ],'go-
', 'LineWidth',2)  
plot( [ x_vals(clusterhead) x_vals(clusterhead_neighbors(end2)) ] , ... 
      [ y_vals(clusterhead)  y_vals(clusterhead_neighbors(end2)) ],'go-
', 'LineWidth',2)  
plot( [ x_vals(clusterhead_neighbors(end1)) 
x_vals(clusterhead_neighbors(end3) )] , ... 
      [ y_vals(clusterhead_neighbors(end1))  
y_vals(clusterhead_neighbors(end3)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end2)) 
x_vals(clusterhead_neighbors(end4) )] , ... 
      [ y_vals(clusterhead_neighbors(end2))  
y_vals(clusterhead_neighbors(end4)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end3)) 
x_vals(clusterhead_neighbors(end5) )] , ... 
      [ y_vals(clusterhead_neighbors(end3))  
y_vals(clusterhead_neighbors(end5)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end4)) 
x_vals(clusterhead_neighbors(end6) )] , ... 
      [ y_vals(clusterhead_neighbors(end4))  
y_vals(clusterhead_neighbors(end6)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end5)) 
x_vals(clusterhead_neighbors(end7) )] , ... 
      [ y_vals(clusterhead_neighbors(end5))  
y_vals(clusterhead_neighbors(end7)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end6)) 
x_vals(clusterhead_neighbors(end8) )] , ... 
      [ y_vals(clusterhead_neighbors(end6))  
y_vals(clusterhead_neighbors(end8)) ],'go-', 'LineWidth',2) 
   
      hold on 
 
%Second solution on rotated lines 
      %Ast point  
xa=0; 
ya=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1); k(2)]; 
XYAA=[xa ya]; 
XYAA=inv(A)*B 
       
 %B point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)+intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYBB=[xd yd]; 
XYBB=inv(A)*B 
  
 %C point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)-intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYCC=[xd yd]; 
XYCC=inv(A)*B   
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 %D point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)+2*intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYDD=[xd yd]; 
XYDD=inv(A)*B 
  
 %E point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)-2*intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYEE=[xd yd]; 
XYEE=inv(A)*B 
  
%F point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)+3*intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYFF=[xd yd]; 
XYFF=inv(A)*B 
  
%G point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)-3*intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYGG=[xd yd]; 
XYGG=inv(A)*B 
  
%H point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)+4*intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYHH=[xd yd]; 
XYHH=inv(A)*B 
  
% I point 
xd=0; 
yd=0; 
A=[1 -k(1); 1 -c(2)]; 
B=[k(2)-4*intd*(sqrt(1+(k(1))^2)); c(1)]; 
XYII=[xd yd]; 
XYII=inv(A)*B 
  
hold on 
plot(XYAA(2),XYAA(1), 'rx', XYBB(2), XYBB(1), 'rx',XYCC(2), XYCC(1), 
'rx',XYDD(2), XYDD(1), 'rx',... 
    XYEE(2), XYEE(1), 'rx',XYFF(2), XYFF(1), 'rx',XYGG(2), XYGG(1), 
'rx',XYHH(2), XYHH(1), 'rx',XYII(2), XYII(1), 'rx') 
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%end1=0 
vvv1=Inf 
for i=1:index 
    dbb=sqrt((XYBB(2)-x_vals(clusterhead_neighbors(i)))^2+(XYBB(1)-
y_vals(clusterhead_neighbors(i)))^2) 
     
    if dbb<vvv1 
        vvv1=dbb 
        end11=i 
    end 
end 
vvv2=Inf 
for i=1:index 
    if i~=end11 
    dcc=sqrt((XYCC(2)-x_vals(clusterhead_neighbors(i)))^2+(XYCC(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dcc<vvv2 
        vvv2=dcc 
        end22=i 
    end 
    end 
end 
  
vvv3=Inf 
for i=1:index 
    if i~=end11 & i~=end22 
    ddd=sqrt((XYDD(2)-x_vals(clusterhead_neighbors(i)))^2+(XYDD(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if ddd<vvv3 
        vvv3=ddd 
        end33=i 
    end 
    end 
end 
vvv4=Inf 
for i=1:index 
    if i~=end11 & i~=end22 & i~=end33 
    dee=sqrt((XYEE(2)-x_vals(clusterhead_neighbors(i)))^2+(XYEE(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dee<vvv4 
        vvv4=dee 
        end44=i 
    end 
    end 
end 
  
vvv5=Inf 
for i=1:index 
    if i~=end11 & i~=end22 & i~=end33 & i~=end44 
    dff=sqrt((XYFF(2)-x_vals(clusterhead_neighbors(i)))^2+(XYFF(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dff<vvv5 
        vvv5=dff 
        end55=i 
    end 
    end 
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end 
  
vvv6=Inf 
for i=1:index 
    if i~=end11 & i~=end22 & i~=end33 & i~=end44 & i~=end55 
    dgg=sqrt((XYGG(2)-x_vals(clusterhead_neighbors(i)))^2+(XYGG(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dgg<vvv6 
        vvv6=dgg 
        end66=i 
    end 
    end 
end 
  
vvv7=Inf 
for i=1:index 
    if i~=end11 & i~=end22 & i~=end33 & i~=end44 & i~=end55 & i~=end66  
    dhh=sqrt((XYHH(2)-x_vals(clusterhead_neighbors(i)))^2+(XYHH(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dhh<vvv7 
        vvv7=dhh 
        end77=i 
    end 
    end 
end 
  
vvv8=Inf 
for i=1:index 
    if i~=end11 & i~=end22 & i~=end33 & i~=end44 & i~=end55 & i~=end66 
i~=end77  
    dii=sqrt((XYII(2)-x_vals(clusterhead_neighbors(i)))^2+(XYII(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dii<vvv8 
        vvv8=dii 
        end88=i 
    end 
    end 
end 
  
d_total1b=vvv1+vvv2+vvv3+vvv4+vvv5+vvv6+vvv7+vvv8 
%plot second solution 
plot( [ x_vals(clusterhead) x_vals(clusterhead_neighbors(end11)) ] , 
... 
      [ y_vals(clusterhead)  y_vals(clusterhead_neighbors(end11)) 
],'go-', 'LineWidth',2)  
plot( [ x_vals(clusterhead) x_vals(clusterhead_neighbors(end22)) ] , 
... 
      [ y_vals(clusterhead)  y_vals(clusterhead_neighbors(end22)) 
],'go-', 'LineWidth',2)  
plot( [ x_vals(clusterhead_neighbors(end11)) 
x_vals(clusterhead_neighbors(end33) )] , ... 
      [ y_vals(clusterhead_neighbors(end11))  
y_vals(clusterhead_neighbors(end33)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end22)) 
x_vals(clusterhead_neighbors(end44) )] , ... 
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      [ y_vals(clusterhead_neighbors(end22))  
y_vals(clusterhead_neighbors(end44)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end33)) 
x_vals(clusterhead_neighbors(end55) )] , ... 
      [ y_vals(clusterhead_neighbors(end33))  
y_vals(clusterhead_neighbors(end55)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end44)) 
x_vals(clusterhead_neighbors(end66) )] , ... 
      [ y_vals(clusterhead_neighbors(end44))  
y_vals(clusterhead_neighbors(end66)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end55)) 
x_vals(clusterhead_neighbors(end77) )] , ... 
      [ y_vals(clusterhead_neighbors(end55))  
y_vals(clusterhead_neighbors(end77)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end66)) 
x_vals(clusterhead_neighbors(end88) )] , ... 
      [ y_vals(clusterhead_neighbors(end66))  
y_vals(clusterhead_neighbors(end88)) ],'go-', 'LineWidth',2) 
   
      hold off 
  
hold off 
      hold off 
       
     DDa_total=min(d_total1, d_total1b) 
  
     if DDa_total==d_total1 
         X_vals_linear_array=[x_vals(clusterhead_neighbors(end7)),  
x_vals(clusterhead_neighbors(end5)), 
x_vals(clusterhead_neighbors(end3)), 
x_vals(clusterhead_neighbors(end1)), x_vals(clusterhead), 
x_vals(clusterhead_neighbors(end2)), 
x_vals(clusterhead_neighbors(end4)), 
x_vals(clusterhead_neighbors(end6)),x_vals(clusterhead_neighbors(end8))
] 
         Y_vals_linear_array=[y_vals(clusterhead_neighbors(end7)), 
y_vals(clusterhead_neighbors(end5)), 
y_vals(clusterhead_neighbors(end3)), 
y_vals(clusterhead_neighbors(end1)), y_vals(clusterhead), 
y_vals(clusterhead_neighbors(end2)), 
y_vals(clusterhead_neighbors(end4)), 
y_vals(clusterhead_neighbors(end6)),y_vals(clusterhead_neighbors(end8))
] 
  
          
     elseif DDa_total==d_total1b 
         X_vals_linear_array=[x_vals(clusterhead_neighbors(end77)), 
x_vals(clusterhead_neighbors(end55)), 
x_vals(clusterhead_neighbors(end33)), 
x_vals(clusterhead_neighbors(end11)), x_vals(clusterhead), 
x_vals(clusterhead_neighbors(end22)), 
x_vals(clusterhead_neighbors(end44)), 
x_vals(clusterhead_neighbors(end66)),x_vals(clusterhead_neighbors(end88
))] 
        Y_vals_linear_array=[y_vals(clusterhead_neighbors(end77)), 
y_vals(clusterhead_neighbors(end55)), 
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y_vals(clusterhead_neighbors(end33)), 
y_vals(clusterhead_neighbors(end11)), y_vals(clusterhead), 
y_vals(clusterhead_neighbors(end22)), 
y_vals(clusterhead_neighbors(end44)), 
y_vals(clusterhead_neighbors(end66)),y_vals(clusterhead_neighbors(end88
))] 
  
   end 
 ANTENNA2(iii,:)=antenna_array2 
  X_VALUES_ANTENNA2(iii,:)=X_values_anten2 
  Y_VALUES_ANTENNA2(iii,:)=Y_values_anten2 
   
X_vals_Linear_array_trend(iii, :)=X_vals_linear_array 
Y_vals_Linear_array_trend(iii, :)=Y_vals_linear_array 
  
hold off 
 end 
%best solutions of iterative and least squares line fitting are 
evaluated at  
%linear_fitting function 
  [ mean_dd, mean_dd2, Int_mean, Int2_mean, Tot_mean, 
Tot2_mean]=linnear_fitting9(... 
    X_vals_Linear_array_trend, Y_vals_Linear_array_trend, 
X_VALUES_ANTENNA2, Y_VALUES_ANTENNA2); 
  
clc 
X_VALUES_ANTENNA2(iii,:)=X_values_anten2 
Y_VALUES_ANTENNA2(iii,:)=Y_values_anten2 
   
X_vals_Linear_array_trend(iii, :)=X_vals_linear_array 
Y_vals_Linear_array_trend(iii, :)=Y_vals_linear_array 
 mean_dd 
 mean_dd2 
 Int_mean 
 Int2_mean 
 Tot_mean 
 Tot2_mean 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Linnear_fitting.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [ mean_dd, mean_dd2, Int_mean, Int2_mean, Tot_mean, 
Tot2_mean]=linnear_fitting(... 
    x_vals_Linear_array_trend, y_vals_Linear_array_trend, 
X_VALUES_ANTENNA2, Y_VALUES_ANTENNA2) 
GG=1000 
H=GG;   %Number of iteration to be tested for errors 
K=GG; 
G=GG; 
T=GG; 
 for i=1:H 
      
 f=300; 
dddd = (((3*10^8)/(f*10^6)))/2 ; 
  
%x,y are the one step calculation of nodes array 
%x2,y2 are the multible steps calculation of node array 
  
x=x_vals_Linear_array_trend; 
y=y_vals_Linear_array_trend; 
x2=X_VALUES_ANTENNA2; 
y2=Y_VALUES_ANTENNA2; 
  
% Get one line each time and find the error 
x=x(i,:); 
y=y(i,:); 
x2=x2(i,:); 
y2=y2(i,:); 
  
x=x'; 
y=y'; 
x2=x2'; 
y2=y2'; 
  
%Perpedicular distance error  
X=[ones(9,1) x];    %9 for 9-node array or 7 for 7-node array 
Y=y; 
c=X\Y; 
t=0:0.1:10; 
z=c(2)*t+c(1); 
  
for j=1:9          %9 for 9-node array or 7 for 7-node array 
  
arith(j)=abs(c(2)*x(j)-y(j)+c(1)); 
paran(j)=sqrt((c(2))^2+1); 
d(j)=arith(j)/paran(j); 
t=0:0.1:10; 
z=c(2)*t+c(1); 
k=[-(1/c(2)); y(j)+(1/c(2))*x(j)] ; 
r=k(1)*t+k(2); 
  
xx(j)=(k(2)-c(1))/(c(2)-k(1)); 
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yy(j)=k(1)*(xx(j))+k(2); 
  
 end 
  
x=x'; 
y=y'; 
X2=[ones(9,1) x2]; 
Y2=y2; 
c2=X2\Y2; 
t=0:0.1:10; 
z2=c2(2)*t+c2(1); 
  
for j=1:9 
arith2(j)=abs(c2(2)*x2(j)-y2(j)+c2(1)); 
paran2(j)=sqrt((c2(2))^2+1); 
d2(j)=arith2(j)/paran2(j); 
t=0:0.1:10; 
z2=c2(2)*t+c2(1); 
k2=[-(1/c2(2)); y2(j)+(1/c2(2))*x2(j)] ; 
r2=k2(1)*t+k2(2); 
xx2(j)=(k2(2)-c2(1))/(c2(2)-k2(1)); 
yy2(j)=k2(1)*(xx2(j))+k2(2); 
 end 
 
x2=x2'; 
y2=y2'; 
x=x'; 
y=y'; 
Xxx(i,:)=xx; 
Yyy(i,:)=yy; 
Xxx2(i,:)=xx2; 
Yyy2(i,:)=yy2; 
  
dd(i,:)=d; 
dd2(i,:)=d2; 
end 
  
 dd; 
 dd2; 
 m_dd=mean(dd'); 
 m_dd2=mean(dd2'); 
 mean_dd=mean(m_dd) 
 mean_dd2=mean(m_dd2) 
  
 %Inter-node distance error  
 for g=1:G 
 xx=Xxx(g,:); 
 yy=Yyy(g,:); 
 xx2=Xxx2(g,:); 
 yy2=Yyy2(g,:);  
  
for jj=1:8 
    prod(jj)=sqrt((xx(1)-xx(jj+1))^2+(yy(1)-yy(jj+1))^2); 
    prod2(jj)=sqrt((xx2(1)-xx2(jj+1))^2+(yy2(1)-yy2(jj+1))^2); 
end 
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 prodd(g,:)=prod; 
 prodd2(g,:)=prod2; 
 end 
  
 prodd; 
 prodd2; 
 pro=mean(prodd); 
 pro2=mean(prodd2); 
 pro_mean=mean(pro); 
 pro2_mean=mean(pro2); 
  
  for k=1:K 
      
     pr=prodd(k,:); 
     pr2=prodd2(k,:); 
  
     for jj=1:8 
         interd(jj)=abs(((jj)*dddd)-(pr(jj))); 
          interd2(jj)=abs(((jj)*dddd)-(pr2(jj))); 
     end 
      
     Interdd(k,:)=interd; 
     Interdd2(k,:)=interd2; 
 end 
 Interdd; 
 Interdd2; 
 Int=mean(Interdd'); 
 Int2=mean(Interdd2'); 
 Int_mean=mean(Int); 
 Int2_mean=mean(Int2); 
 
%Total error 
   
 for t=1:T 
      
     pr=prodd(t,:); 
     pr2=prodd2(t,:); 
     Int=Interdd(t,:); 
     Int2=Interdd2(t,:); 
     dd_d=dd(t,:); 
     dd2_d=dd2(t,:); 
           
     for jj=1:8 
         tot(jj)=sqrt((dd_d(jj))^2+(Int(jj))^2); 
         tot2(jj)=sqrt((dd2_d(jj))^2+(Int2(jj))^2); 
     end 
     Total(t,:)=tot; 
     Total2(t,:)=tot2; 
 end 
         Total; 
         Total2; 
         Tot=mean(Total'); 
         Tot2=mean(Total2'); 
         Tot_mean=mean(Tot);  Tot2_mean=mean(Tot2); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Planar_array_iterative.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format short 
clear all 
clc 
close all 
  
H=2; 
for iii=1:H 
  
n=900;   %insert the data 
r=1.5; 
X=10; 
Y=10; 
  
q=7; 
freq=300; 
intd= (((3*10^8)/(freq*10^6)))/2 ; 
  
  
%Plot nodes 
x_vals = rand( 1 , n); 
y_vals = rand( 1 , n); 
  
  
x_vals = x_vals * X; 
y_vals = y_vals * Y; 
  
figure(1) 
plot( x_vals, y_vals, 'ko') 
  
daspect('manual') 
daspect([1 1 1]) 
axis([0 X 0 Y]) 
  
h = gcf; 
rect = [50, 65, 650, 620]; 
set(h, 'Position', rect); 
  
  
for i = 1:1:n 
    text( x_vals(i)+(X/55),y_vals(i)+(Y/55),int2str(i), 'FontSize', 8) 
end 
hold on 
  
  
%Add connectivity 
connected = zeros(n); 
distance = inf * ones(n); 
  
  
for i = 1:1:(n-1) 
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    for j = (i+1):1:n 
        if (   ( (x_vals(i) - x_vals(j))^2  +  (y_vals(i) - 
y_vals(j))^2 ) < r*r ) 
            connected(i,j) = 1; 
            distance(i,j) = sqrt( (x_vals(i)-x_vals(j))^2  +  
(y_vals(i)-y_vals(j))^2 ); 
        end 
    end 
end 
  
for i = 1:1:(n-1) 
    for j = (i+1):1:n 
        if (   connected(i,j) == 1)  
            plot(  [ x_vals(i)  x_vals(j)]  ,   [ y_vals(i)  y_vals(j) 
]   )   
        end 
    end 
end 
  
for i = 2:1:n 
    for j = 1:1:(i-1) 
        connected(i,j) = connected(j,i); 
        distance(i,j)=distance(j,i); 
    end 
end 
  
%Find clusterhead 
  
row_count_dok = zeros(1,n); 
TT=0; 
for i=1:1:n 
    for j=(i+1):1:n 
    if (   ( (x_vals(i) - x_vals(j))^2  +  (y_vals(i) - y_vals(j))^2 ) 
< r*r ) 
        row_count_dok(i)= row_count_dok(i) + 1; 
                 
        end 
    end 
    end 
H=max(row_count_dok) 
    % max(row_count_dok) 
for i = 1:n 
    if row_count_dok(i) == H 
        clusterhead = i; 
    end 
end 
  
  
plot( x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,... 
    'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8) 
  
clusterhead_neighbors = find( connected( clusterhead,:) == 1); 
  
index=size(clusterhead_neighbors,2); 
indexx=(1+size(clusterhead_neighbors,2)); 
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%New figure only with clusterhead and clusterhead_neighbors 
hold off 
figure(2) 
plot( x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,... 
    'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8) 
hold on 
  
  
daspect('manual') 
daspect([1 1 1]) 
axis([0 X 0 Y]) 
  
h = gcf; 
rect = [50, 65, 650, 620]; 
set(h, 'Position', rect); 
  
plot( x_vals(clusterhead_neighbors), y_vals(clusterhead_neighbors), 
'ko') 
 for i = 1:1:index 
     text( x_vals(i)+(X*10),y_vals(i)+(Y*1000),int2str(i), 'FontSize', 
8); 
 end 
  
hold on 
   
%Plot least square fitting and perpendicular lines left an right 
X_col=[x_vals(clusterhead_neighbors) x_vals(clusterhead)]'; 
Y_col=[y_vals(clusterhead_neighbors) y_vals(clusterhead)]'; 
  
XX=[ones(indexx,1) X_col]; 
XX2=[X_col]; 
YY=[Y_col]; 
c=XX\YY; 
  
%function that finds the solution and evaluates the results 
[planar] = lines (clusterhead, connected, x_vals, y_vals, c ,XX2, YY, 
intd); 
hold off 
for i=1:6 
figure(i+1) 
plot( x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,... 
    'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8) 
hold on 
daspect('manual') 
daspect([1 1 1]) 
axis([0 X 0 Y]) 
  
h = gcf; 
rect = [50, 65, 650, 620]; 
set(h, 'Position', rect); 
  
plot( x_vals(clusterhead_neighbors), y_vals(clusterhead_neighbors), 
'ko') 
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hold on 
c(2)=c(2)-tan(pi/6) 
c(1)=y_vals(clusterhead)-(c(2))*x_vals(clusterhead) 
  
[d_total1] = Planar_lines (clusterhead, connected, x_vals, y_vals, c 
,XX2, YY, intd); 
  
d_total1 
hold off 
D_total1(i,:)=d_total1 
  
end 
  
DD_total1=min(D_total1) 
DDD_total1(iii,:)=DD_total1 
End 
%results for the planar array 
Final_total1=min(DDD_total1) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Planar_lines.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [planar] = Planar_lines (clusterhead, connected, x_vals, ... 
    y_vals, c ,XX2, YY, intd)  
  
clusterhead_neighbors = find( connected( clusterhead,:) == 1); 
index=size(clusterhead_neighbors,2); 
indexx=(1+size(clusterhead_neighbors,2)); 
arith=abs(c(2)*XX2-YY+c(1)); 
paran=sqrt(c(2)^2+1); 
d=arith/paran; 
f=mean(d); 
  
t=0:0.1:10; 
z=c(2)*t+c(1); 
%start to construct the lines and points 
k=[-(1/c(2)); y_vals(clusterhead)-(-1/c(2))*(x_vals(clusterhead))] ; 
r=k(1)*t+k(2); 
arithh=abs(k(1)*XX2-YY+k(2)); 
parann=sqrt(k(1)^2+1); 
dd=arithh/parann; 
ff=mean(dd); 
plot(t,z,'r-',t,r,'b-') 
  
hold on 
zz1=c(2)*t+c(1)+intd*(sqrt(1+(c(2))^2)); 
zz2=c(2)*t+c(1)-intd*(sqrt(1+(c(2))^2)); 
zz3=c(2)*t+c(1)+2*intd*(sqrt(1+(c(2))^2)); 
zz4=c(2)*t+c(1)-2*intd*(sqrt(1+(c(2))^2)); 
rr1=k(1)*t+k(2)+intd*(sqrt(1+(k(1))^2)); 
rr2=k(1)*t+k(2)-intd*(sqrt(1+(k(1))^2)); 
rr3=k(1)*t+k(2)+2*intd*(sqrt(1+(k(1))^2)); 
  
hold on 
plot(t,zz1,'r--',t,zz2,'r--'); 
hold on 
plot(t,rr1,'b--',t,rr2,'b--'); 
hold on 
plot(t,zz3,'r--'); 
hold on 
plot(t,rr3,'b--'); 
  
connected = zeros(index); 
distance = inf * ones(index); 
 for i = 1:1:(indexx) 
    for j = (i+1):1:indexx 
            connected(i,j) = 1; 
            distance(i,j) = sqrt( (x_vals(i)-x_vals(j))^2 +… 
                            (y_vals(i)-y_vals(j))^2 ); 
            d_epalithesh(i)=arith(i)/paran; 
            %kk(i)=arithh(i)/parann; 
    end 
  end 
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%FIND EDGES ON THE PARALLILOGRAM 
%1st point in the center 
xa=0; 
ya=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1); k(2)]; 
XYA=[xa ya]; 
XYA=inv(A)*B 
   
%2nd point 
xb=0; 
yb=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1); k(2)+intd*(sqrt(1+(k(1))^2))]; 
XYB=[xb yb]; 
XYB=inv(A)*B 
  
%3rd point 
xc=0; 
yc=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)+intd*(sqrt(1+(k(1))^2))]; 
XYC=[xc yc]; 
XYC=inv(A)*B 
  
%4th point 
xd=0; 
yd=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYD=[xd yd]; 
XYD=inv(A)*B 
  
%5th point 
xe=0; 
ye=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)-intd*(sqrt(1+(k(1))^2))]; 
XYE=[xe ye]; 
XYE=inv(A)*B 
  
%6th point 
xf=0; 
yf=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1); k(2)-intd*(sqrt(1+(k(1))^2))]; 
XYF=[xf yf]; 
XYF=inv(A)*B 
  
%7th point 
xg=0; 
yg=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)-intd*(sqrt(1+(k(1))^2))]; 
XYG=[xg yg]; 
XYG=inv(A)*B 
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%8th point 
xh=0; 
yh=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYH=[xh yh]; 
XYH=inv(A)*B 
  
%9th point 
xi=0; 
yi=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)+intd*(sqrt(1+(k(1))^2))]; 
XYI=[xi yi]; 
XYI=inv(A)*B; 
  
%10th point 
xj=0; 
yj=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)+2*intd*(sqrt(1+(k(1))^2))]; 
XYJ=[xj yj]; 
XYJ=inv(A)*B; 
  
%11th point 
xk=0; 
yk=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1);  k(2)+2*intd*(sqrt(1+(k(1))^2))]; 
XYK=[xk yk]; 
XYK=inv(A)*B; 
  
%12th point 
xl=0; 
yl=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)+2*intd*(sqrt(1+(k(1))^2))]; 
XYL=[xl yl]; 
XYL=inv(A)*B; 
  
%13th point 
xm=0; 
ym=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)+2*intd*(sqrt(1+(k(1))^2))]; 
XYM=[xm ym]; 
XYM=inv(A)*B; 
  
%14th point 
xn=0; 
yn=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)+intd*(sqrt(1+(k(1))^2))]; 
XYN=[xn yn]; 
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XYN=inv(A)*B; 
  
%15th point 
xo=0; 
yo=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)]; 
XYO=[xo yo]; 
XYO=inv(A)*B; 
  
%16th point 
xp=0; 
yp=0; 
A=[1 -c(2); 1 -k(1)]; 
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)-intd*(sqrt(1+(k(1))^2))]; 
XYP=[xp yp]; 
XYP=inv(A)*B; 
   
plot(XYA(2),XYA(1), 'bx', XYB(2), XYB(1), 'bx',XYC(2), XYC(1), 
'bx',XYD(2), XYD(1), 'bx',... 
    XYE(2), XYE(1), 'bx',XYF(2), XYF(1), 'bx',XYG(2), XYG(1), 
'bx',XYH(2), XYH(1), 'bx',XYI(2), XYI(1), 'bx', XYJ(2), XYJ(1),'bx', 
XYK(2),XYK(1),'bx',... 
    XYL(2),XYL(1),'bx', XYM(2),XYM(1),'bx',XYN(2),XYN(1), 'bx', XYO(2), 
XYO(1),'bx', XYP(2),XYP(1),'bx') 
  
%Distances from the points 
for i=1:indexx 
da(i)=sqrt((XYA(1)-x_vals(i))^2+(XYA(2)-y_vals(i))^2) 
db(i)=sqrt((XYB(1)-x_vals(i))^2+(XYB(2)-y_vals(i))^2) 
dc(i)=sqrt((XYC(1)-x_vals(i))^2+(XYC(2)-y_vals(i))^2) 
dd(i)=sqrt((XYD(1)-x_vals(i))^2+(XYD(2)-y_vals(i))^2) 
de(i)=sqrt((XYE(1)-x_vals(i))^2+(XYE(2)-y_vals(i))^2) 
df(i)=sqrt((XYF(1)-x_vals(i))^2+(XYF(2)-y_vals(i))^2) 
di(i)=sqrt((XYI(1)-x_vals(i))^2+(XYI(2)-y_vals(i))^2) 
dh(i)=sqrt((XYH(1)-x_vals(i))^2+(XYH(2)-y_vals(i))^2) 
dj(i)=sqrt((XYJ(1)-x_vals(i))^2+(XYJ(2)-y_vals(i))^2) 
dk(i)=sqrt((XYK(1)-x_vals(i))^2+(XYK(2)-y_vals(i))^2) 
dl(i)=sqrt((XYL(1)-x_vals(i))^2+(XYL(2)-y_vals(i))^2) 
dm(i)=sqrt((XYM(1)-x_vals(i))^2+(XYM(2)-y_vals(i))^2) 
dn(i)=sqrt((XYN(1)-x_vals(i))^2+(XYN(2)-y_vals(i))^2) 
do(i)=sqrt((XYO(1)-x_vals(i))^2+(XYO(2)-y_vals(i))^2) 
dp(i)=sqrt((XYP(1)-x_vals(i))^2+(XYP(2)-y_vals(i))^2) 
end 
  
end1=0 
vv1=Inf 
for i=1:index 
    db=sqrt((XYB(2)-x_vals(clusterhead_neighbors(i)))^2+(XYB(1)-
y_vals(clusterhead_neighbors(i)))^2) 
     
    if db<vv1 
        vv1=db 
        end1=i 
    end 
end 
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vv2=Inf 
for i=1:index 
    if i~=end1 
    dc=sqrt((XYC(2)-x_vals(clusterhead_neighbors(i)))^2+(XYC(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dc<vv2 
        vv2=dc 
        end2=i 
    end 
    end 
end 
  
vv3=Inf 
for i=1:index 
    if i~=end1 & i~=end2 
    dd=sqrt((XYD(2)-x_vals(clusterhead_neighbors(i)))^2+(XYD(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dd<vv3 
        vv3=dd 
        end3=i 
    end 
    end 
end 
vv4=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 
    de=sqrt((XYE(2)-x_vals(clusterhead_neighbors(i)))^2+(XYE(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if de<vv4 
        vv4=de 
        end4=i 
    end 
    end 
end 
  
vv5=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 
    df=sqrt((XYF(2)-x_vals(clusterhead_neighbors(i)))^2+(XYF(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if df<vv5 
        vv5=df 
        end5=i 
    end 
    end 
end 
  
vv6=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 
    dg=sqrt((XYG(2)-x_vals(clusterhead_neighbors(i)))^2+(XYG(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dg<vv6 
        vv6=dg 
        end6=i 
    end 
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    end 
end 
  
vv7=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6  
    dh=sqrt((XYH(2)-x_vals(clusterhead_neighbors(i)))^2+(XYH(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dh<vv7 
        vv7=dh 
        end7=i 
    end 
    end 
end 
  
vv8=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6  
    & i~=end7  
    di=sqrt((XYI(2)-x_vals(clusterhead_neighbors(i)))^2+(XYI(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if di<vv8 
        vv8=di 
        end8=i 
    end 
    end 
end 
  
vv9=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6  
       & i~=end7 & i~=end8 
    dj=sqrt((XYJ(2)-x_vals(clusterhead_neighbors(i)))^2+(XYJ(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dj<vv9 
        vv9=dj 
        end9=i 
    end 
    end 
end 
  
vv10=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6  
       & i~=end7 & i~=end8 & i~=end9 
    dk=sqrt((XYK(2)-x_vals(clusterhead_neighbors(i)))^2+(XYK(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dk<vv10 
        vv10=dk 
        end10=i 
    end 
    end 
end 
  
vv11=Inf 
for i=1:index 
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    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 & 
       & i~=end7 & i~=end8 & i~=end9 & i~=end10 
    dl=sqrt((XYL(2)-x_vals(clusterhead_neighbors(i)))^2+(XYL(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dl<vv11 
        vv11=dl 
        end11=i 
    end 
    end 
end 
  
vv12=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 & 
             i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 
    dm=sqrt((XYM(2)-x_vals(clusterhead_neighbors(i)))^2+(XYM(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dm<vv12 
        vv12=dm 
        end12=i 
    end 
    end 
end 
  
vv13=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &  
i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 & i~=end12 
    dn=sqrt((XYN(2)-x_vals(clusterhead_neighbors(i)))^2+(XYN(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dn<vv13 
        vv13=dn 
        end13=i 
    end 
    end 
end 
  
vv14=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &  
         i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 & i~=end12 &  
         i~=end13 
    do=sqrt((XYO(2)-x_vals(clusterhead_neighbors(i)))^2+(XYO(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if do<vv14 
        vv14=do 
        end14=i 
    end 
    end 
end 
  
vv15=Inf 
for i=1:index 
    if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &  
        i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 & i~=end12 &  
        i~=end13 & i~=end14 
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    dp=sqrt((XYP(2)-x_vals(clusterhead_neighbors(i)))^2+(XYP(1)-
y_vals(clusterhead_neighbors(i)))^2) 
    if dp<vv15 
        vv15=dp 
        end15=i 
    end 
    end 
end 
  
d_total1=vv1+vv2+vv3+vv4+vv5+vv6+vv7+vv8+vv9+vv10+vv11+vv12+vv13+vv14+v
v15 
%plot the constracted planar array 
plot( [ x_vals(clusterhead) x_vals(clusterhead_neighbors(end1)) ] , ... 
      [ y_vals(clusterhead)  y_vals(clusterhead_neighbors(end1)) ],'go-
', 'LineWidth',2)  
plot( [ x_vals(clusterhead_neighbors(end1)) 
x_vals(clusterhead_neighbors(end2)) ] , ... 
      [ y_vals(clusterhead_neighbors(end1))  
y_vals(clusterhead_neighbors(end2)) ],'go-', 'LineWidth',2)  
plot( [ x_vals(clusterhead_neighbors(end2)) 
x_vals(clusterhead_neighbors(end3) )] , ... 
      [ y_vals(clusterhead_neighbors(end2))  
y_vals(clusterhead_neighbors(end3)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end3)) 
x_vals(clusterhead_neighbors(end4) )] , ... 
      [ y_vals(clusterhead_neighbors(end3))  
y_vals(clusterhead_neighbors(end4)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end4)) 
x_vals(clusterhead_neighbors(end5) )] , ... 
      [ y_vals(clusterhead_neighbors(end4))  
y_vals(clusterhead_neighbors(end5)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end5)) 
x_vals(clusterhead_neighbors(end6) )] , ... 
      [ y_vals(clusterhead_neighbors(end5))  
y_vals(clusterhead_neighbors(end6)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end6)) 
x_vals(clusterhead_neighbors(end7) )] , ... 
      [ y_vals(clusterhead_neighbors(end6))  
y_vals(clusterhead_neighbors(end7)) ],'go-', 'LineWidth',2)  
  plot( [ x_vals(clusterhead_neighbors(end7)) 
x_vals(clusterhead_neighbors(end8) )] , ... 
      [ y_vals(clusterhead_neighbors(end7))  
y_vals(clusterhead_neighbors(end8)) ],'go-', 'LineWidth',2) 
   plot( [ x_vals(clusterhead_neighbors(end8)) 
x_vals(clusterhead_neighbors(end9) )] , ... 
      [ y_vals(clusterhead_neighbors(end8))  
y_vals(clusterhead_neighbors(end9)) ],'go-', 'LineWidth',2) 
  plot( [ x_vals(clusterhead_neighbors(end9)) 
x_vals(clusterhead_neighbors(end10) )] , ... 
      [ y_vals(clusterhead_neighbors(end9))  
y_vals(clusterhead_neighbors(end10)) ],'go-', 'LineWidth',2) 
  plot( [ x_vals(clusterhead_neighbors(end10)) 
x_vals(clusterhead_neighbors(end11) )] , ... 
      [ y_vals(clusterhead_neighbors(end10))  
y_vals(clusterhead_neighbors(end11)) ],'go-', 'LineWidth',2) 
  plot( [ x_vals(clusterhead_neighbors(end11)) 
x_vals(clusterhead_neighbors(end12) )] , ... 
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      [ y_vals(clusterhead_neighbors(end11))  
y_vals(clusterhead_neighbors(end12)) ],'go-', 'LineWidth',2) 
  plot( [ x_vals(clusterhead_neighbors(end12)) 
x_vals(clusterhead_neighbors(end13) )] , ... 
      [ y_vals(clusterhead_neighbors(end12))  
y_vals(clusterhead_neighbors(end13)) ],'go-', 'LineWidth',2) 
  plot( [ x_vals(clusterhead_neighbors(end13)) 
x_vals(clusterhead_neighbors(end14) )] , ... 
      [ y_vals(clusterhead_neighbors(end13))  
y_vals(clusterhead_neighbors(end14)) ],'go-', 'LineWidth',2) 
  plot( [ x_vals(clusterhead_neighbors(end14)) 
x_vals(clusterhead_neighbors(end15) )] , ... 
      [ y_vals(clusterhead_neighbors(end14))  
y_vals(clusterhead_neighbors(end15)) ],'go-', 'LineWidth',2) 
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%beamforming function 
clear all 
close all 
clc 
  
global c f l b Im Nx Ny 
c=3e8;  
f=0.3e9; 
l=c/f; 
b=2*pi/l; 
  
GdBlsavg=zeros(181,181); 
X300 
Y300 
    
NumIter=10; 
for i=1:NumIter; 
    XX=X300(i,:); 
    YY=Y300(i,:); 
    XX=XX'; 
    YY=YY'; 
XXX=[ones(7,1) XX]; 
YYY=YY; 
C(:,i)=XXX\YYY; 
end 
  
F=C(2,:); 
FF=F.*(180/pi); 
  
%%%% X,Y  matrix 100x7 
NumIter=10; 
  
for i=1:NumIter; 
    x=X300(i,:)'; 
    y=Y300(i,:)'; 
     
    x=x-x(1); 
    y=y-y(1); 
     
Nx=7   ;      % Nx number of array elements in x direction  
Ny=1   ;      % Ny number of array elements in y direction 
  
theta0=0 ;     % Elevation angle theta (degrees) 
theta0=theta0*pi/180; 
   
phi0=FF(i);       % Azimuth angle  phi (degrees) 
phi0=phi0*pi/180; 
phi_ang=FF(i);   % Angle phi for beampattern 
  
phi00=0; 
phi00=phi00*pi/180; 
phi00_ang=phi00; 
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%%%%%%%%%    Uniform array (reference)  %%%%%%%%%% 
dx=l/2; % ideal distance ?/2 in x-direction 
xn=(0:Nx-1)*dx; 
xn=repmat(xn',1,Ny); 
xn=reshape(xn,Nx*Ny,1); 
  
dy=l/2;  % ideal distance ?/2 in y-direction 
yn=(0:Ny-1)*dy; 
yn=repmat(yn,Nx,1); 
yn=reshape(yn,Nx*Ny,1); 
  
%%%%%%%%%    End of uniform array   %%%%%%%%%%% 
  
  
  
%%%%%%%%%    Beampattern Uniform Array 
Im=ones(Nx*Ny,1);    % Amplitudes 
wref=weights2(xn,yn,theta0,phi00);   % Reference weights (uniform 
array) 
Gref=gain2D(wref,xn,yn); 
GdBref=10*log10(Gref/max(max(Gref)));  % Gain for reference (uniform 
array) 
  
%%%%%%%%% Beampattern with errors - LS solution 
theta=-90:90; 
th=theta*pi/180; 
  
dn=exp(j*b*(xn*sin(th)*cos(phi00)+yn*sin(th)*sin(phi00)));  % steering 
vector for ULA 
Fdes=wref'*dn; 
d=exp(j*b*(x*sin(th)*cos(phi0)+y*sin(th)*sin(phi0)));  % steering 
vector 
  
ww=Fdes/d;  
ww=ww';   %  or ww=inv(d*d')*d*Fdes'; 
             
Gls=gain2D(ww,x,y); 
GdBls=10*log10(Gls/max(max(Gref)));  
GdBlsavg=GdBlsavg+GdBls; 
end 
  
GdBlsavg=GdBlsavg/NumIter; 
  
figure(3); 
theta=-90:90; 
plot(theta,GdBref(:,phi00_ang+90+1),'b-','Linewidth',2); 
hold on; 
plot(theta,GdBlsavg(:,phi00_ang+90+1),'r--','Linewidth',1); 
grid on; 
legend('Ideal Linear','Actual Positions'); 
axis([-85 85 -50 5]); 
title('Fig.1 : Average Beampattern for 7 linear array elements and 
given \phi','Fontsize',12); 
xlabel('\theta (degrees)','Fontsize',12); 
ylabel('Power Gain (dB),' ,'Fontsize',12); 
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